Introduction: Selenium is an essential trace element involved in different physiological functions of the human body. An inverse relationship between serum selenium levels and cervical intraepithelial neoplasia has been reported. cervical intraepithelial neoplasia is regarded as a potentially premalignant transformation of squamous cells of the cervix. Objectives: To evaluate the relationship between the serum level of selenium and cervical intraepithelial neoplasia. Methods: A case-control study was conducted at Baghdad Teaching Hospital and Iraqi National Cancer Research Center in the University of Baghdad during the period from July 2021 to July 2022. A convenient sample of 100 women was enrolled in the current study and included case group which consisted of 50 women who were diagnosed with cervical intraepithelial neoplasia and control group which consisted of 50 women who did not have cervical intraepithelial neoplasia as confirmed through histological examination after punch biopsy by colposcopy. Results: The serum level of the selenium was significantly lower in the case groups compared to the control groups (P-value=0.001). In addition, the proportion of the participant with abnormal levels of selenium was significantly higher in the case group compared to the control group (P-value=0.001). In the case group, there was a significant difference between the cervical intraepithelial neoplasia grade regarding the serum level of selenium, the level of selenium significantly decreased with the progression of the disease (P-value=0.001). Conclusions: Selenium deficiency may significantly increase the incidence of cervical intraepithelial neoplasia. In addition, it significantly impacts the transformation to a higher degree as there was a significant difference between cervical intraepithelial neoplasia I, II, and III regarding the level of serum selenium.
Bacteriocin is an important antimicrobial peptide that can be used in industrial and medical fields due to its characteristics of antibacterial, food preservation and anticancer activities. Fifty isolates of Bacillus sp were collected from different soil samples which were already recognized via morphological and biochemical identification process. The isolates were screened for bacteriocin production effective against Staphylococcus spp in order to select the highest producing isolate. The isolate NK16 showed the maximum bacteriocin production (80 AU/ml) which was further characterized as Bacillus subtilis NK 16 through using API identification system (API 20E and API 50CHB). Then, next step was to detect the optimal conditions for maximum
... Show Moreفي هذا البحث تم تحضير المركبات المعدنية الجديدة لأيونات البلاتين (الرباعي) و الذهب (الثلاثي) مع ليكاند قاعدة مانخ جديد مشتق من السيبروفلوكساسين . تم استخدام المعقدات بعد ذلك كمصدر لتحضير جزيئات عن طريق ترسيب المعقدات على مسام دقائق السيليكا النانوية. Si/Au2O3 Si/PtO2 تم تشخيص الليكاند و معقداته
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreHerein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
This study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a u
... Show MoreSteel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show More