Introduction: Selenium is an essential trace element involved in different physiological functions of the human body. An inverse relationship between serum selenium levels and cervical intraepithelial neoplasia has been reported. cervical intraepithelial neoplasia is regarded as a potentially premalignant transformation of squamous cells of the cervix. Objectives: To evaluate the relationship between the serum level of selenium and cervical intraepithelial neoplasia. Methods: A case-control study was conducted at Baghdad Teaching Hospital and Iraqi National Cancer Research Center in the University of Baghdad during the period from July 2021 to July 2022. A convenient sample of 100 women was enrolled in the current study and included case group which consisted of 50 women who were diagnosed with cervical intraepithelial neoplasia and control group which consisted of 50 women who did not have cervical intraepithelial neoplasia as confirmed through histological examination after punch biopsy by colposcopy. Results: The serum level of the selenium was significantly lower in the case groups compared to the control groups (P-value=0.001). In addition, the proportion of the participant with abnormal levels of selenium was significantly higher in the case group compared to the control group (P-value=0.001). In the case group, there was a significant difference between the cervical intraepithelial neoplasia grade regarding the serum level of selenium, the level of selenium significantly decreased with the progression of the disease (P-value=0.001). Conclusions: Selenium deficiency may significantly increase the incidence of cervical intraepithelial neoplasia. In addition, it significantly impacts the transformation to a higher degree as there was a significant difference between cervical intraepithelial neoplasia I, II, and III regarding the level of serum selenium.
The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
A variety of single-engine driven files and inematics have been introduced to improve the clinical performance of NiTi rotary files. The purpose of this in vitro study was to measure and compare the incidence of dentinal defects after root canal preparation with different single file systems.
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show More