Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreIn this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreHumans are exposed to nuclear radiations every day, and these radiations are both natural and artificial. When the body tissues are exposed to nuclear radiation, free radicals are formed, which are responsible for cancer development. In this research, silver nanoparticles were synthesized by electrical explosion wire method. Nanoparticles were added to deionized water that contained free radicals before and after exposure to gamma rays. The obtained results indicate that the silver nanoparticles have antioxidant potential through possessing free radical scavenging activity, as they can donate electron to free radicals and become neutralize. Then, these nanoparticles were injected to mice before and after their irradiation with gamma ray.
... Show MoreTwo oil wells were tested to find the abnormal pressure zones using sonic log technique. We found that well Abu-Jir-3 and Abu-Jir-5 had an abnormal pressure zones from depth 4340 to 4520 feet and 4200 to 4600 feet, respectively. The maximum difference between obtained results and the field measured results did not exceed 2.4%.
In this paper, the formation pressures were expressed in terms of pressure gradient which sometimes reached up to twice the normal pressure gradient.
Drilling and developing such formations were dangerous and expensive.
The plotted figures showed a clear derivation from the normal trend which confirmed the existence of abnormal pressure zones.
Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show MoreNowadays, the process of ontology learning for describing heterogeneous systems is an influential phenomenon to enhance the effectiveness of such systems using Social Network representation and Analysis (SNA). This paper presents a novel scenario for constructing adaptive architecture to develop community performance for heterogeneous communities as a case study. The crawling of the semantic webs is a new approach to create a huge data repository for classifying these communities. The architecture of the proposed system involves two cascading modules in achieving the ontology data, which is represented in Resource Description Framework (RDF) format. The proposed system improves the enhancement of these environments ach
... Show MoreEmerge application was used in Hampsson-Russell programs and that uses a combination of multiple 3D or 2D seismic attributes to predict some reservoir parameter of interest. In this research used the seismic inversion technique was performed on post-stack three dimensions (3D) seismic data in Nasriya oilfield with five wells and then used this results in Emerge analysis (training and application) were used to estimate reservoir properties (effective porosity) with multiattribute analysis derive relations between them at well locations. The horizon time slice of reservoir units of (Yb1, Yb3 and Yc) of Yamama Formation was made for property (effective porosity) to confirm match results and enhancement trends within these
... Show MoreThe activity concentration of natural radioactivity levels, of artificial cesium and transfer factor from soil to plants in agricultural areas at Al- Yusiefya region were determined by using NaI (Tl) detector spectrometer. Ten species of leafy plants have been selected: Spinach, Parsley, Watercress, Lettuce, Rashad, Radish, Green onion, Turnip green, Green beet and Mint. The mean activity concentrations of 238U, 232Th, 40K and 137Cs in leafy vegetable samples were 12.4±3.8, 14.8±4.7, 283±93 and 1.06±0.99 Bg/kg, and in soil samples were 15.9±4.3, 16.1±5.2, 298.5±3.9, and 1.11±0.37 Bq/kg. The radiation hazard indices were evaluated (radium
... Show More