Bioavailability is the objective for an optimum formulation. The target of the analysis is to maximize both the fluidity and disintegration profile of class II weakly compounds that are water-soluble. Anti-dyslipidemia drug rosuvastatin calcium (RC) (bioavailability 20%) through formulating as nanofibers (NFs) using electrospinning (ES) technology. Twenty formulas were prepared, and different polymers and polymer combinations with various concentrations were used such as polyethylene oxide (PEO) polyvinyl pyrrolidine (PVPK-30), and hydroxypropyl methylcellulose (HPMC). Three distinct groups of maximum parameters, including polymeric solution, electrospinning method, and ambient parameter, are capable of influencing the creation along with the shape of those ultimate NFs. The prepared formulas of rosuvastatin calcium nanofibers (RC-NFs) were evaluated for nanofibers diameter, dissolution profiles, free standing microscopy with electrons and fourier transformation infrared (FTIR)spectroscopy are also available. As a consequence, the velocity of dissolution increases as the particle’s surrounding area increases because of the its small size decrease to the nano level. The optimum ES parameters of polymeric solution (polymer type, concentration, combination, and effect of solvent type), ES process (injection flow rate, voltage, needle gauge, collector round per minute, needle to collector distance and collector type) and ambient parameter are tested and determined. Results show that four selected formulas of NFs are (F12, F14, F15 and F19) with an average diameter of (95, 120, 100 and 80 nm) respectively. The best ultrafine, smooth and beadless NFs is (F19) determined the fact that the narrower the circumference of the RC-NFs, the quicker its breakdown and the shorter the period of this medicinal component’s liberation.
Hybrid architecture of ZnO nanorods/graphene oxide ZnO-NRs@GO synthesized by electrostatic self-assembly methods. The morphological, optical and luminescence characteristics of ZnO-NRs@GO and ZnO-NRs thin films have been described by FESEM, TEM, HRTEM, and AFM, which refers to graphene oxide have been coated ZnO-NRs with five layers. Here we synthesis ZnO-NRs@GO by simple, cheap and environmentally friendly method, which made it favorable for huge -scale preparation in many applications such as photocatalyst. ZnO-NRs@GO was applied as a photocatalyst Rodamin 6 G (R6G) dye from water using 532 nm diode laser-induced photocatalytic process. Overall degradation of R6G/ ZnO-NRs@GO was achieved after 90 minutes of laser irradiation while it ne
... Show MoreThe clinical spectrum of cutaneous leishmaniasis (CL), an intracellular parasitic pathogen, ranges from a single sore healing to chronic crusty lesions with a manifestation of treatment resistance. The complicated interaction between Leishmania bodies and the early immune response, including innate and adaptive mechanisms, determines the evolution of nodules. This study examined the levels of the chemoattractant interleukin 8 (IL-8), pro-inflammatory nitric oxide (NO), and immunoregulatory macrophage inhibitory factor (MIF) in the serum of subjects recently diagnosed with cutaneous leishmaniasis, in parallel with patients being monitored during consecutive sodium stibogluconate (Pentostam) treatment. A total of 161 serum samples of newly di
... Show MoreBiodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
Solid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t
... Show MorePraise be to God, who started his book with the praise of himself and prayers and peace be upon those who do not have a prophet after him and his family and companions and those who followed them with charity until the Day of Judgment. Either:
The research examines the meanings of the formulas of the increased verbs that were mentioned in Surat Al-Baqara, at the imam of the imams of the Islamic nation, namely, Al-Fakhri Al-Razi (d. 606 AH), may God Almighty have mercy on him. With the imams of Quranic scholars.

One of the main element in the network is the intersection which consider as the critical points because there are many conflict in this element. The capability and quality of operation of an intersection was assessed to provide a better understanding of the network's traffic efficiency. In Baghdad city, the capital of/Iraq the majority of the intersections are operated under the congestion status and with level of service F, therefore theses intersection are consider as high spot point of delay in the network of Baghdad city. In this study we selected Al-Ameria signalized intersection as a case study to represent the delay problem in the intersections in Baghdad. The intersection is located in the w
This work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show MoreWind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di
... Show More