The monetary policy is a vital method used in implementing monetary stability through: the management of income and adjustment of the price (monetary targets) in order to promote stability and growth of real output (non-cash goals); the tool of interest rate and direct investment guides or movement towards the desired destination; and supervisory instruments of monetary policy in both quantitative and qualitative. The latter is very important as a standard compass to investigate the purposes of the movement monetary policy in the economy. The public and businesses were given monetary policy signals by those tools. In fiscal policy, there are specific techniques to follow to do the spending and collection of revenue. This is done in order to actualize the adopted goals by the state and the relative closeness between monetary policy and fiscal policy objectives that requires relationship between two policies. Also, in order to achieve the goal of stability and promote economic growth within the tax multiplier. Multiplier of government spending is aiming at the goal of stability automatically and the allocation or distribution of economic stability through a basic introduction of the aim and objective of allocating resources to the required fields. In this vein, the objectives of the fiscal policy can be brought up spontaneously with the provisions of side and control effects which are in consonant with the outcome received in terms of economic cycle. The research showed that the impact of monetary policy in Iraq is insignificant on non-oil gross domestic product through a multiplier of monetary policy (K) and the flexibility of non-oil gross domestic product for money supply (E). Similarly, the impact of fiscal policy on non-oil gross domestic product through the fiscal policy multiplier (K) and the flexibility of non-oil gross domestic product for the government to spend are insignificant
A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreFibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreThe present study was carried out to determine the bacterial isolates and study their antimicrobial susceptibility in case of burned wound infections. 70 burn wound swabs were taken from patients, who presented invasive burn wound infection from both sex and average age of 3-58 years, admitted to teaching medical Al- Kendi hospital from October 2007 to June 2008. Pseudomonas aeruginosa was found to be the most common isolate (48.9%) followed by Staphylococcus aureus (24.4%), Citrobacter braakii (13.3%), Enterobacter spp. (11.1%), Coagulase-negative Staphylococci (11.1%), Proteus vulgaris (6.66%), Corynebacterium spp. (6.66%), Micrococcus (6.66%), Proteus mirabilis (4.44%), Enterococcus faecalis (4.44%), E.coli (4.44%), Klebsiella spp. (2.22
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained