Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreIn the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means
... Show MoreIn this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
Objective: This study aims to determine the effectiveness of health education oriented program on parents' awareness
towards adolescents' violence control.
Methodology: A quasi-experimental study was carried out in Baghdad city form 1st of April, 2008 to 1st of September,
2009. A purposive "non-probability" sample of 60 parents who have adolescents' violence in their families who were
selected according to specific criteria. The researcher divided the samples into two equal groups; the study and control
groups. The health education program, as well as a questionnaire was constructed as tools for data collection by the
researcher for the purpose of the study. Content validity was determined by a panel of experts in diffe
Combination therapy with a dipeptidyl peptidase–4 inhibitor and metformin or metformin+ glibenclamide results in substantial and additive glucose- lowering effects in Iraqis patients with type 2 diabetes mellitus . This study evaluated the glycemic control by using two groups of combinations of drugs metformin + glibenclamide and metformin + sitagliptin in Baghdad teaching hospital / medical city. 68 T2DM patients and 34 normal healthy individuals as control group were enrolled in this study and categorized in to two treatment groups. The group 1 (34 patients ) received ( metformin 500 mg three times daily + glibenclamide 5 mg twice daily ) and the group 2 (34 patients) received (metformin 500 mg three times daily + sitaglip
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show More