This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-linear optimization problem and use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through examples and discussions, we determine the optimal values of the regulation parameters to ensure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the discretization elements are M=N=80. The accuracy of the forward solutions helps to obtain sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine the optimal regularization parameter values to obtain satisfactory solutions. We also investigate the existence of inverse solutions to the considered problems and verify their uniqueness based on established definitions and theorems.
Lithology identification plays a crucial role in reservoir characteristics, as it directly influences petrophysical evaluations and informs decisions on permeable zone detection, hydrocarbon reserve estimation, and production optimization. This paper aims to identify lithology and minerals composition within the Mishrif Formation of the Ratawi Oilfield using well log data from five open hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. At this step, the logging lithology identification tasks often involve constructing a lithology identification model based on the assumption that the log data are interconnected. Lithology and minerals were identified using three empirical methods: Neutron-Density cross plots for lithology id
... Show MoreBackground: The world health organization estimates that worldwide 2 billion people still have iodine deficiency Objectives: Is to make comparison between the effect of identification of recurrent laryngeal nerve (RLN) and non-identification of the nerve on incidence of recurrent laryngeal nerve injury (RLNI) in different thyroidectomy procedures.
Type of the study: cross –sectional study.
Methods: 132 patients with goiters underwent thyroidectomy .Identification of RLN visually by exposure were done for agroup of them and non-identification of the nerves for the other group. The outcomes of RLNI in the two groupsanalyzed statistically for the effect of
... Show MoreIn this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company. The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system. This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system. We calculate the range for each estimator by using the Maximum Likelihood estimator. We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after it checked by the
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a
... Show More