This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-linear optimization problem and use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through examples and discussions, we determine the optimal values of the regulation parameters to ensure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the discretization elements are M=N=80. The accuracy of the forward solutions helps to obtain sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine the optimal regularization parameter values to obtain satisfactory solutions. We also investigate the existence of inverse solutions to the considered problems and verify their uniqueness based on established definitions and theorems.
In this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show
... Show MoreExperimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte
... Show MoreWithin this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic
... Show MoreScheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreMixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreAnew mathematical formula was proposed to describe the behavior of the extinction coefficient as a function of ambient temperature and wavelengths for some of infrared materials. This formula was derived depending on some experimental data of transmittance spectrum versus wavelengths for many ambient temperatures. The extensive study of the spectrum characteristics and depending on Bose-Einstein distribution led to derive an equation connecting the extinction coefficient or the absorption coefficient with the ambient temperature and wavelengths of the incident rays. The basic assumption in deriving process is the decreasing in transmittance value with the increasing temperature which is only due to the changing in extinction coeffi
... Show MoreOur research aimed to find a new material that can be an efficient heavy metal free flame retardant for plasticized poly(vinyl chloride) comparable to the conventional flame retardants. One of these extraordinary materials is Oxydtron using as an admixture for concrete. Oxydtron showed unexpected efficiency as a flame retardant agent and an excellent heat stabilizer as well. Limiting oxygen index (LOI), static heat stability, Congo-red, and differential scanning calorimetry (DSC) were carried out. The thermal tests proved that Oxydtron is suitable to improve plasticized poly(vinyl chloride) performance at high temperatures applications in terms of flame retarding and thermal stability