This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-linear optimization problem and use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through examples and discussions, we determine the optimal values of the regulation parameters to ensure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the discretization elements are M=N=80. The accuracy of the forward solutions helps to obtain sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine the optimal regularization parameter values to obtain satisfactory solutions. We also investigate the existence of inverse solutions to the considered problems and verify their uniqueness based on established definitions and theorems.
This paper focuses on the most important element of scientific research: the research problem which is confined to the concept of concern or concern surrounding the researcher about any event or phenomenon or issue paper and need to be studied and addressed in order to find solutions for them, to influence the most scientific research steps from asking questions and formulating hypotheses, to employ suitable methods and tools to choose the research and sample community, to employ measurement and analysis tools. This problem calls for a great effort by the researcher intellectually or materially to develop solutions.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
The Paleocene-Eocene Thermal Maximum (PETM) event, which represented a sudden and abnormal rise in temperature during the early Cenozoic Era, is regarded as one of the most important global geologic phenomena. Two important index microfossils (nannoplankton and Ostracoda) were utilised to understand and predict the paleoenvironment and describe the changes during this period. The basis of the study was 12 cutting samples taken from Aaliji and the lower part of Jaddala formations of a subsurface section of (Ba-8) borehole in central Iraq. Some geophysical data were used to determine the upper and lower contacts of the Aaliji Formation and define the shale rate in the studied formations. The micropaleontologic investigation reveals
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving
... Show MoreThe aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreThis study was aimed to isolate and identify Saccharomyces boulardii from Mangosteen fruits (Garcinia mangostana L.) by traditional and molecular identification methods To get safe and healthy foods probiotics for use, The isolates and two commercial strains were subjected to cultural, morphological and biochemical tests, The colonies of the isolates were spherical, smooth, mucoidal, dull and white to cream colour on SD agar media .The shape of cells was globose to ovoid and sometimes with budding, in a single form or clustered like a beehive. The isolates and two commercial strains were unable to metabolized galactose and lactose , Results shows that all isolates were unable to utilize potassium nitrate and not grow in the presence of (
... Show MoreIn this research study the effect of fish on the properties optical films thickness 1200-1800 and calculated energy gap Basra direct transport permitted and forbidden to membranes and urged decreasing values ??of Optical Energy Gap increase fish included accounts optical also calculate the constants visual as factories winding down and the refractive index and reflectivity membranes also by real part and imaginarythe dielectric constant
Antimony (Sb) films are fabricated by depositing (Sb) on glass substrates at room
temperature by the method of vacuum evaporation with thickness (0.25 and 0.51m),
with rate of deposition equal to (2.77Å/sec), the two samples are annealed in a
vacuum for one hour at 473K. The optical constants which are represented by the
refractive index (n), extinction coefficient (k) were determined from transmittance
spectram in the near Infrared(2500-3500 )nm regions. The tests have been shown
that the optical energy gap increases with increasing of annealing temperature for
the two samples.