This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-linear optimization problem and use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through examples and discussions, we determine the optimal values of the regulation parameters to ensure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the discretization elements are M=N=80. The accuracy of the forward solutions helps to obtain sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine the optimal regularization parameter values to obtain satisfactory solutions. We also investigate the existence of inverse solutions to the considered problems and verify their uniqueness based on established definitions and theorems.
The Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the
... Show MoreThis research aims at studying each of the cold and hot thermal wavelengths affecting
Iraq for a minimum climatic course of 11 years beginning from 1992 till 2002. Three stations
were selected including the parts of Iraq surface: Mosul, Baghdad and Basrah.
The wave days were also connected with the related climatic elements represented by
the wind direction and speeds and the relative humidity. It was shown that Iraq is affected by
the rates of hot thermal wave lengths greatly compared to the rates of cold wavelengths. The
results suggested that the highest rate of hot and cold wavelengths recorded over Basra station
was (3.5) days for the cold and (5) days for the hot. While the lowest rates was at Mosul
station
White and black chia seeds were used in some food products, such us gluten –free biscuits processing by using rice flour and chia seeds (white and black) with these amonths 112.5, 74.25, 56.25, 27.5 g with 27.5g of quinoa seeds for treatments 1, 2, 3 and 4 respectively, and comparison sensitively with the control treatment which has no additions including the appearance and homogenization of the product, surface cracks, softness, taste and flavor, core color and the specific volume, some microbiological tests were performed for biscuit product after storage for 4 months at 30 and 50°C including bacterial total count and fungal and yeast count, results showed that there weren’t any observation of bacteria or yeast or fungal growth at
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MoreThe concept of meaning is one of the most important topics that have occupied the mind of the recipient and critic in all the arts, especially the plastic arts, where we find that the art of contemporary plastic art, in particular sculpture has multiple readings and many critics differed in terms of different reading and views of the same artistic achievement.
This research will identify the different works of contemporary Iraqi sculptors while presenting and studying their works, as well as (studying the problem of meaning) of the artistic achievements of the sculptors in particular. The various parties interested in Iraqi sculpture did not seize the problem of the objective and subjective meaning of contemporary Iraqi sculpture
... Show MoreIn the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonic
... Show MoreTime is very important in educational institutions. It is also one of our contemporary problem ‚as time is a clear – cut and limited factor‚ it demands that administrators should monitor it by administering and monitoring the principles of time.
Hence‚ the researcher attempts to identify the skills of administrating time and the reasons that cause the waste of time of the Heads of Departments at university of Baghdad.
Significance of the research:
Time is very important to all educational administrators and one of them is the institutions of Higher education. One of the
... Show More