The influence of Cr3+ doping on the ground state properties of SrTiO3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the band gap indicated a new electrical case of transferring semiconducting material into a conducting material which intern enhance conductivity. Furthermore, it was found that Cr3+ doping either at Sr or Ti positions could effectively develop the SrTiO3 dielectric constant properties. In addition, the absorption spectra was extended to cover the visible light region of the electromagnetic radiation, indicating the capability of this compound in harvesting sunlight for solar cell applications. Consequently, it can be said that Cr3+ is an effective dopant which opening up new prospects for various industrial and technological applications.
Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chem
... Show MoreUndoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreFilms of pure Poly (methyl methacrylate) (PMMA) doped by potassium iodide (KI) salt with percentages (1%) at different thickness prepared by casting method at room temperature. In order to study the effect of increasing thickness on optical properties, transmission and absorption spectra have been record for five different thicknesses(80,140,210,250,320)µm. The study has been extended to include the changes in the band gap energies, refractive index, extinction coefficient and absorption coefficient with thickness.
This work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-dope
... Show MoreObjective:Fluorid-containing dental alginate impression materials can exert a considerable reduction in
enamel solubility. The objective was to evaluate the effect of fluoride addition on the setting time and
compressive strength of alginate impression materials.
Methodology: 60 samples were constructed from alginate impression material (30 samples for setting
time test and 30 samples for compressive strength test).Specimens of each test divided into three
subgroup. Group A: 10 specimens of alginate were mixed with distilled water [control], Group B: 10
specimens of alginate were mixed with100-ppm fluoride and Group C:10 specimens of alginate were
mixed with 2%Naf.
Results: the result of setting time test showed t
The current research is concerned with methods of formation and their effect on the sintering process of ceramic materials. The research is divided into a number of chapters. The first chapter addressed the research structure (the research problem, importance, objective, limits, and it also defined the terms used in the research). The second chapter addressed the theoretical framework, where the theoretical framework has been divided into three sections. The first section dealt with methods of formation of ceramic materials including: Plasticizing method 2- semi-dry pressing method 3- dry pressing method 4- extrusion method 5- casting method.
The researcher found that there is a clear difference between the methods through her formati
In the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio
... Show MoreIn this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.