Construction is a hazardous industry with a high number of injuries. Prior research found that many industry injuries can be prevented by implementing an effective safety plan if prepared and maintained by qualified safety personnel. However, there are no specific guidelines on how to select qualified construction safety personnel and what criteria should be used to select an individual for a safety position in the United States (US) construction industry. To fill this gap in knowledge, the study goal was to identify the desired qualifications of safety personnel in the US construction industry. To achieve the study goal, the Delphi technique was used as the main methodology for determining the desired qualifications for construction safety personnel. As a result, a panel of 15 subject-matter experts was selected, and 4 rounds of surveys were carried out. The findings of the study led to the identification of the desired qualifications for three construction safety positions (safety entry, safety professional, and safety manager). The present study contributes to the body of theoretical knowledge on construction safety and presents practical guidelines to assist industry stakeholders select qualified safety personnel for their projects. The selection of qualified safety personnel is expected to improve workplace safety performance and positively reflect on other project outcomes. Construction stakeholders should pay attention to three key aspects (namely, education, experience, and certification) when determining the qualifications for a safety leadership position and take into consideration the type of position intended to be filled. This study fills the gap in knowledge by identifying the desired qualifications and criteria on how to select safety personnel in the US construction industry.
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreThis study was designed to look for certain biochemical markers(serum uric acid and serum peroxynitrite) in women presented with obesity and to compare the level of these markers with non-obese women. A total number of 63 women were recruited from outpatients and private clinics to admit in this study. The patients were grouped into non obese women (Group I) and obese women (Group II). The anthropometric and blood pressure were determined and venous blood was obtained from each patient for determination of C-reactive protein, uric acid and peroxynitrite. The results showed that there were no significant differences in age or in concomitant or associated diseases in both groups except rheumatoid arthritis which account 80% of group I and 25%
... Show MoreThe current research deals with practical studies that explain to the Iraqi consumer multiple instances about the phenomenon of water hammer which occur in the water pipeline operating with pressure. It concern a practical study of the characteristics of this phenomenon and economically harmful to the consumer the same time. Multiple pipe fittings are used aimed to reduce this phenomenon and its work as alternatives to the manufactured arresters that used to avoid water hammer in the sanitary installations, while the consumer did not have any knowledge as to the non-traded for many reasons, including the water pressure decreases in the networks and the use of consumer pumps to draw water directly from the network. Study found a number of
... Show MoreIn this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.
The present work is to investigate the feasibility of removal vanadium (V) and nickel (Ni) from Iraqi heavy gas oil using activated bentonite. Different operating parameters such as the degree of bentonite activation, activated bentonite loading, and operating time was investigated on the effect of heavy metal removal efficiency. Experimental results of adsorption test show that Langmuir isotherm predicts well the experimental data and the maximum bentonite uptake of vanadium was 30 mg/g. The bentonite activated with 50 wt% H2SO4 shows a (75%) removal for both Ni and V. Results indicated that within approximately 5 hrs, the vanadium removal efficiencies were 33, 45, and 60% at vanadium loadings of 1
... Show MoreTexture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
Tracking moving objects is one of a very important applications within the computer vision. The goal of object tracking is segmenting a region of interest from a video scene and keeping track of its motion and positioning. Track moving objects used in many applications such as video surveillance, robot vision, and traffic monitoring, and animation. In this paper a four-wheeled robotic system have been designed and implemented by using Arduino-Uno microcontroller. Also a useful algorithms have been developed to detect and track objects in real time. The main proposed algorithm based on the kernel based color algorithm and some geometric properties to tracking color object. Robotic system is a compromise of two principal parts which are th
... Show MoreUltraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-
... Show MoreThe global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show More