The reuse or recycling of waste materials in different aspects of life is served the objective of sustainability and be beneficial to society. In recent years, a wide variety of waste materials were used in pavement construction. One of these materials is glass that generally produces in large quantities and crushed glass can be considered feasible alternative source of aggregate for asphalt mixture production. This study focused on examining the asphalt mixture properties of wearing course using crushed glass as fine aggregates. Fine crushed glass with various percentages by total weight retained on sieve 2.36 mm, 0.3 mm and 0.075 mm was used in the study. The results indicate that mixes containing crushed glass had lower Marshall stabilities and tensile strengths compared to conventional mixes. Moreover, the moisture damage resistance of glass-asphalt mixture was acceptable and satisfy the specification requirements for percentages of glass replacement up to 30 percent. Consequently, adding 30 percent of glass by weight of three sizes is the optimal value which represents about 15.6 percent by weight of total aggregate with maximum size 2.36 mm. The study has concluded that recycling and reuse of waste glass in asphalt mixture could be possible and yield a result which satisfies the specification of asphalt concrete wearing course mixtures.
The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreTo ascertain the stability or instability of time series, three versions of the model proposed by Dickie-Voller were used in this paper. The aim of this study is to explain the extent of the impact of some economic variables such as the supply of money, gross domestic product, national income, after reaching the stability of these variables. The results show that the variable money supply, the GDP variable, and the exchange rate variable were all stable at the level of the first difference in the time series. This means that the series is an integrated first-class series. Hence, the gross fixed capital formation variable, the variable national income, and the variable interest rate
... Show MoreA watermark is a pattern or image defined in a paper that seems as different shades of light/darkness when viewed by the transmitted light which used for improving the robustness and security. There are many ways to work Watermark, including the addition of an image or text to the original image, but in this paper was proposed another type of watermark is add curves, line or forms have been drawn by interpolation, which produces watermark difficult to falsify and manipulate it. Our work suggests new techniques of watermark images which is embedding Cubic-spline interpolation inside the image using Bit Plane Slicing. The Peak to Signal Noise Ratio (PSNR) and Mean Square Error (MSE) value is calculated so that the quality of the original i
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show More
In this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThe study investigates the water quality of the Orontes River, which is considered one of the important water recourses in Syria, as it is used for drinking, irrigation, swimming and industrial needs. A database of 660 measurements for 13 parameters concentrations used, were taken from 11 monitoring points distributed along the Orontes River for a period of five years from 2015-2019, and to study the correlation between parameters and their impact on water quality, statistical analysis was applied using (SPSS) program. Cluster analysis was applied in order to classify the pollution areas along the river, and two groups were given: (low pollution - high pollution), where the areas were classified according to the sources of pollution to w
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.