The reuse or recycling of waste materials in different aspects of life is served the objective of sustainability and be beneficial to society. In recent years, a wide variety of waste materials were used in pavement construction. One of these materials is glass that generally produces in large quantities and crushed glass can be considered feasible alternative source of aggregate for asphalt mixture production. This study focused on examining the asphalt mixture properties of wearing course using crushed glass as fine aggregates. Fine crushed glass with various percentages by total weight retained on sieve 2.36 mm, 0.3 mm and 0.075 mm was used in the study. The results indicate that mixes containing crushed glass had lower Marshall stabilities and tensile strengths compared to conventional mixes. Moreover, the moisture damage resistance of glass-asphalt mixture was acceptable and satisfy the specification requirements for percentages of glass replacement up to 30 percent. Consequently, adding 30 percent of glass by weight of three sizes is the optimal value which represents about 15.6 percent by weight of total aggregate with maximum size 2.36 mm. The study has concluded that recycling and reuse of waste glass in asphalt mixture could be possible and yield a result which satisfies the specification of asphalt concrete wearing course mixtures.
In this paper, we propose an approach to estimate the induced potential, which is generated by swift heavy ions traversing a ZnO thin film, via an energy loss function (ELF). This induced potential is related to the projectile charge density, ρq(k) and is described by the extended Drude dielectric function. At zero momentum transfer, the resulting ELF exhibits good agreement with the previously reported results. The ELF, obtained by the extended Drude model, displays a realistic behavior over the Bethe ridge. It is observed that the induced potential relies on the heavy ion velocity and charge state q. Further, the numerical results show that the induced potential for neutral H, as projectile, dominates when the heavy ion velocity is less
... Show MoreThis paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of
... Show More<span lang="EN-US">Increase the in population and kindergarten number, especially in urban areas made it difficult to properly manage waste. Thus, this paper proposed a system dedicated to kindergartens to manage to dispose of waste, the system can be called smart garbage based on internet of things (SGI). To ensure a healthy environment and an intelligent waste in the kindergarten management system in an integrated manner and supported by the internet of things (IoT), we presented it in detail identification, the SGI system includes details like a display system, an automatic lid system, and a communication system. This system supplied capabilities to monitor the status of waste continuously and on IoT website can show the pe
... Show MoreOne of the principle concepts to understand any hydrocarbon field is the heterogeneity scale; This becomes particularly challenging in supergiant oil fields with medium to low lateral connectivity and carbonate reservoir rocks.
The main objectives of this study is to quantify the value of the heterogeneity for any well in question, and propagate it to the full reservoir. This is a quite useful specifically prior to conducting detailed water flooding or full field development studies and work, in order to be prepared for a proper design and exploitation requirements that fit with the level of heterogeneity of this formation.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More