The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, temperature 46.4 °C, pressure 21 Mpa, and flowrate 27,000 m3/day which is nearly closed to suggested oily content 8.5 ppm. An artificial neural network (ANN) technique was employed in this study to estimate the oil content in the treatment process. An artificial neural network model was remarkably accurate at simulating the process under investigation. A low mean squared error (MSE) and relative error (RE) equal to 1.55 × 10−7 and 2.5, respectively, were obtained during the training phase, whilst the testing results demonstrated a high coefficient of determination (R2) equal to 0.99.
This research addresses the employment of public relations for foreign oil corporate social responsibility programs operating in Iraq. It is a study of the programmes of six petroleum companies operating in Basra Governorate, which were selected for research as the highest production of Iraqi oil, as well as its enjoyment of strategic oil stores in Iraq.It contains the largest oil fields operatedby major international companies. This study aims at a number of objectives, notably the following:1)Recognize the most prominent corporate social responsibility projects and initiatives the companies have introduced to the local public.2)Investigate the extent to which the Iraqi publ
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show More
As a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show More