Preferred Language
Articles
/
PhjKKJUBVTCNdQwC4ilr
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, temperature 46.4 °C, pressure 21 Mpa, and flowrate 27,000 m3/day which is nearly closed to suggested oily content 8.5 ppm. An artificial neural network (ANN) technique was employed in this study to estimate the oil content in the treatment process. An artificial neural network model was remarkably accurate at simulating the process under investigation. A low mean squared error (MSE) and relative error (RE) equal to 1.55 × 10−7 and 2.5, respectively, were obtained during the training phase, whilst the testing results demonstrated a high coefficient of determination (R2) equal to 0.99.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
An Investigation to the Abrasive Wear in Pipes Used for Oil Industry
...Show More Authors

The work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 27 2023
Journal Name
Journal Of Planner And Development
The dynamics of the oil industry in shaping land uses: a case study of the Zubair oil field
...Show More Authors

The emergence of oil fields and subsequent changes in adjacent land use are known to affect settlements and communities. Everywhere the industry emerges, there is little understanding about the impact of oil fields on land use in the surrounding areas. The oil industry in Iraq is one of the most important industries and is almost the main industry in the Iraqi economic sector, and it is very clear that this industry is spread over large areas, and at the same time adjoins with population communities linked to it developmentally.

The rapid development and expansion of oil extraction activities in various regions has led to many challenges related to land-use planning and management. Here, the problem of research  arises on th

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Crude Oil Spillage and the Impact of Drilling Processes on the Soil at Rumaila Oil Field- Southern Iraq
...Show More Authors

The demand on energy sources throughout the world have led to an increase in the production processes of crude oil which is considered to be the main source of energy, without considering the impact on the environment. The objective of this study is to evaluate the environmental impact of drilling processes and crude oil spillage on soil in the Rumaila oil field, Basra, Southern Iraq. An investigation was undertaken to determine the content of Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals in the soil. Ten soil samples were collected near oil wells and analyzed. The results showed a high concentration of PAHsin the soil, particularly (Acenaphthene, Fluorene, Anthracene, Fluoranthene and Pyrene) due to crude oil spillage. The he

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development a Statistical Relationship between Compressional Wave Velocity and Petrophysical Properties from Logs Data for JERIBE Formation ASMARI Reservoir in FAUQI Oil Field
...Show More Authors

   The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development a Statistical Relationship between Compressional Wave Velocity and Petrophysical Properties from Logs Data for JERIBE Formation ASMARI Reservoir in FAUQI Oil Field
...Show More Authors

   The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and

... Show More
View Publication
Crossref
Publication Date
Mon May 31 2021
Journal Name
Iraqi Geological Journal
Mechanical Rock Properties Estimation for Carbonate Reservoir Using Laboratory Measurement: A Case Study from Jeribe, Khasib and Mishrif Formations in Fauqi Oil Field
...Show More Authors

Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Heterogeneous Photocatalytic Degradation for Treatment of Oil from Wastewater
...Show More Authors

In the present study, advanced oxidation process / heterogeneous photocatalytic process (UV/TiO2/Fenton) system was investigated to the treatment of oily wastewater. The present study was conducted to evaluate the effect of hydrogen peroxide concentration H2O2, initial amount of the iron catalyst Fe+2, pH, temperature, amount of TiO2 and the concentration of oil in the wastewater.  The removal efficiency for the system UV/TiO2/Fenton at optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=5, temperature =30oC, TiO2=75mg/L) for 1000mg/L load was found to be 77%.

Aluminum foil cover around the re

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system
...Show More Authors

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
View Publication
Scopus (14)
Crossref (4)
Scopus Crossref