Gypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image velocimetry (PIV) measurement and Plaxis 3D simulation. The results showed that high-resolution digital cameras captured soil deformation using PIV, displacement fields, and velocity vectors were generated, which helped identify different sand movement zones. Further, PIV showed punching and general shear failure in uncontaminated and soaked contaminated gypsum soils, respectively. Moreover, the Plaxis results corresponded well with the PIV, as material behavior models are essentially simplified representations of the actual behavior of footing and soil. Understanding soil deformation behavior is crucial for accurate engineering calculations and designs, making these findings valuable for geotechnical and construction engineering applications. Doi: 10.28991/CEJ-2024-010-07-016 Full Text: PDF
Background subtraction is the dominant approach in the domain of moving object detection. Lots of research has been done to design or improve background subtraction models. However, there are a few well-known and state-of-the-art models that can be applied as a benchmark. Generally, these models are applied to different dataset benchmarks. Most of the time, choosing an appropriate dataset is challenging due to the lack of dataset availability and the tedious process of creating ground-truth frames for the sake of quantitative evaluation. Therefore, in this article, we collected local video scenes of a street and river taken by a stationary camera, focusing on dynamic background challenges. We presented a new technique for creati
... Show MoreThe impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show MoreFree vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreImproved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreThe current research demonstrates the ERI method's effectiveness as a supplementary engineering site investigation approach. Engineering site research is important to indicate the subsoil of proposed production sites. The benefit of the dipole-dipole array for ERI electrical resistivity imaging is that it provides informative records of subsurface geology and condition along with profiles. The dipole-dipole array was performed along with three parallel profiles at the Diyala University site to identify the buried facilities (pipes and cables) in the area. The buried electric cable embedded in a plastic tube was used for simulation to report and verify the field resistivity results. Interpretation of field facts confirmed that
... Show MoreNews headlines are key elements in spreading news. They are unique texts written in a special language which enables readers understand the overall nature and importance of the topic. However, this special language causes difficulty for readers in understanding the headline. To illuminate this difficulty, it is argued that a pragmatic analysis from a speech act theory perspective is a plausible tool for a headline analysis. The main objective of the study is to pragmatically analyze the most frequently employed types of speech acts in the news headlines covering COVID-19 in Aljazeera English website. To this end, Bach and Harnish's (1979) Taxonomy of Speech Acts has been adopted to analyze the data. Thirty headlines have been collected f
... Show MoreIn this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreThe aim of this research is to prove the idea of maximum mX-N-open set, m-N-extremally disconnected with respect to t and provide some definitions by utilizing the idea of mX-N-open sets. Some properties of these sets are studied.