Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreAt the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreThe first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.
The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.
The aim of the research is to measure the change in the impact of the factors of the Corona pandemic on psychological sensitivity and COVID-19 phobia in a sample of Bisha University students and to detect the differences in the phobia (phobia) Covid-19 among the sample members in the measurement before the ban and after the ban was opened, in addition to the differences in psychological sensitivity of The sample has between sizes before and after the spread of the Corona pandemic, as well as the differences in them according to the gender variable (male, female). The researcher relied on the comparative approach. The scale of psychological sensitivity and COVID-19 phobia was applied to a sample of (62) male and female respondents.
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More