Many approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, this issue has been approached through the formulation of drugs as nanocrystals. Nanocrystals consist of pure drug(s) and a minimum of surface active agent(s) required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size typically in the range of 200 - 500 nm. By reducing particle size to nanoscale, the surface area available for dissolution is increased, and thus bioavailability is enhanced. Drug nanocrystals constitute a versatile formulation approach to enhance the pharmacokinetic and pharmacodynamic properties of poorly soluble drugs. This enhancement is achieved by increasing the dissolution velocity, saturation solubility and mucoadhesion. However, stabilization of nanocrystals remains a major challenge in the development of nanocrystals. Main stability issues include increase in particle size, agglomeration, crystal transformation, and chemical instabilities. as such, combination of steric and ionic stabilizers are required for optimal stabilization. Nanocrystals can be administered by various routes including oral, parenteral, ocular, pulmonary and dermal routes with enhanced pharmacodynamic activity and safety. Functionalization of nanocrystals with radionuclide, imaging moieties and ligands further increases the versatility of nanocrystals. Nanocrystals has been proven successful, as demonstrated by the number of marketed drug products utilizing this technology. The present work provides an overview of the more recent achievements in improving the bioavailability of poorly soluble drugs according to their administration route, and describes the methods developed to overcome physicochemical and stability related problems.
Plantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed
... Show MoreFour electrodes were synthesized based on molecularly imprinted polymers (MIPs). Two MIPs were prepared by using the diclofenac sodium (DFS) as the template, 2-hydroxy ethyl metha acrylate(2-HEMA) and 2-vinyl pyridine(2-VP) as monomers as well as divinyl benzene and benzoyl peroxide as cross linker and initiator respectively. The same composition used for prepared non-imprinted polymers (NIPs) but without the template (diclofenac sodium). To prepared the membranes electrodes used different plasticizers in PVC matrix such as: tris(2-ethyl hexyl) phosphate (TEHP), tri butyl phosphate (TBP), bis(2-ethyl hexyl) adipate (BEHA) and tritolyl phosphate (TTP). The characteristics studied the slop, detection limit, life time and linearity range of DF
... Show MoreIn this work, the spirurid nematode Hartertia gallinarum was reported in the intestine of the spotted sandgrouse, Pterocles senegallus, collected in three different locations: Ga'ara Depression, Iraqi Western Desert, Zurbatiyah and Al-Attariyah, Middle of Iraq. Description and measurements of the nematode were given. The role of termites in the infection of P. senegallus with H. gallinarum was discussed. Occurrence of H. gallinarum in P. senegallus represents a new host record.
Most dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducte
... Show MoreBackground:The effects of contraception on Trichomonas vaginalis have important implications for women who suffer from infections associated with disruptions in the vaginal ecology, such as bacterial vaginitis and urinary tract infections.
Objective: To find the association of the common types of contraceptions with the Trichomonasvaginalis infection in women admitted to the Al-BatoolTeaching Hospital for Maternity and Children in Baqubah city.
Type of study: Cross-sectional study
Methods: This study consist of 75 women with contraception use and71 apparently healthy non contraception user women admitted to outpatient in Al
... Show MoreThe present paper is an experimental study to improve the productivity of the conventional solar still. This done by modifying conventional still in a way that the distilled basin is larger than distillation basin, thus providing an increase in the condensation surface and speeding up the condensation process. Moreover, increase in the dimensions of the distilled base helps coupling reflective panels to the distilled base to reflect incident solar radiation to the distillation basin. For this purpose , two solar stills were made, one conventional designand another made according to the proposed design. The two solar stills were tested during the period from February to July 2009 under varying weather conditions of Basra, Iraq (latitude o
... Show MoreThe use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.
Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.
Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).
In
... Show MoreIn this study, the investigation of Local natural Iraqi rocks kaolin with the addition of different proportions of bauxite and its effect on the physical and mechanical properties of the produced refractories was conducted. Kaolin/bauxite mixture was milled and classified into various size fractions, the kaolin (less than 105 μm) and the bauxite (less than 70μm). The specimens were mixed from kaolin and bauxite in ranges B1 (95+5)%, B2 (90+10)%, B3(85+15)%, and B4 (80+20)% respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of 7 MPa with the addition of (9-12) %wt. of PVA ratio. After molding and drying, the specimens were fired at (1100, 1200 and 13
... Show More