New Schiff-base ligand and their polymeric metal complexes with Cr (Ш), Mn (II), Fe (II), Co (II), Ni (II) and Cu (II) ions are reported. Ligand was prepared in two-step reaction. The reaction of 2-hydroxy-5-methylisophthalaldehyde with 3-Amino-1-propanol resulted in the isolation of precursor (3, 3'-((1E, 1'E)-(propane-1, 3-diylbis (azanylylidene)) bis (methanylylidene)) bis (2-hydroxy-5-methylbenzaldehyde)). The reaction of precursor with acrylamide gave the required ligand;(N, N'-((1E, 1'E)-(((1E, 1'E)-(propane-1, 3-diylbis (azanylylidene)) bis (methanylylidene)) bis (2-hydroxy-5-methyl-3, 1-phenylene)) bis (methanylylidene)) diacrylamide) H2L. The reaction of this ligand with the appropriate metal ions gave polymeric metal complexes of the formulae {[M2 (L) Cl2]. Cl2H2O} n M= Cr (Ш),{[M2 (L)(H2O) 2]. Cl2} n M= Mn (II) Ni (II),{[M2 (L)(H2O) Cl] Cl} nM= Fe (II),{[M2 (L) Cl2]. H2O} n, M= Co (II), Cu (II). A range of …
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show More Sixteen new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the two new Schiff base ligands, which are: - L1= (E)-5-((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) L2 = (E)-5-((2-hydroxy-3-methoxybenzylidene)amino)-2-phenylpyrazolidin-3-one) With divalent metal ions (manganese, cobalt, nickel, copper, zinc, cadmium, mercury) and (tetravalent platinum). Ligands was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) with Salicylaldehyde and ortho-vanillin, which is linked to the metal ions via the nitrogen atoms are the isomethene group and the oxygen is the hydroxide group of t
... Show MoreIn the present study, ( Schiff's bases 6a - 6e) and (new amids derivatives 6f - 6j) have been synthesized . The glutaroyl chloride(2) has been prepared by the reacting of glutaric acid and thionyl chloride in presence of (DMF) . The new compound bis(4-formylphenyl) glutarate (3) has been Synthesized from reaction of one mole of glutaroyl chloride and two moles of 4-hydroxybenzaldehyde . Compound 4,4'-(glutaroylbis(oxy))dibenzoic acid (4) was Synthesized from one mole of glutaroyl chloride and two moles of 4-hydroxybenzoic acid, while compound bis(4-(chlorocarbonyl)phenyl) glutarate (5) was prepared from 4,4'-(glutaroylbis(oxy))dibenzoic acid and Thionyl chloride . Then Schiff's bases 6a - 6e that prepared
... Show MoreThe New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
SYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
A new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
Coupling reaction of 2-amino benzoic acid with phenol gave the new bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, FT-IR and UV-Vis spectroscopic technique. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentr
... Show More