Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum error rate, and the test maximum accuracy for K_value selection with an accuracy of 86.24%. Where the distance metric has been assigned using the Euclidean approach. From previous models, it seems that Breast Cancer Grade2 is the most prevalent type. For the future perspective, a comparative study could be performed to compare the supervised and unsupervised data mining algorithms.
Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Re
... Show MoreMultiple single-nucleotide polymorphisms (SNPs) located in the intergenic region between estrogen receptor 1 and
To assess the potential association between rs3757318 SNP and breast cancer pathogenicity, specifically in relation to serum vitam
Toxoplasmosis is regarded as one of the most important global life-threatening diseases in immune-compromised people. The intracellular protozoon Toxoplasma gondii is the causative pathogen of toxoplasmosis. Aim of this study is to investigate the possible association between T. gondii infection and breast cancer (BC) in Iraqi women, also to assess the effect of T. gondiion interleukin 10 (IL-10) of the immune response. By ELISA method, blood samples from 81 women with breast cancer and 60 apparently healthy women have been examined for presence of anti-toxoplasmaantibodies, also the levels of serum IL-10 were estimated in these subjects. Results showed that women with BC had the highest prevalence rate of toxoplasmosis. The anti- T.gondii
... Show Moreالخلفية: إن سمية الدواء والآثار الجانبية للعلاج الكيميائي تؤثر سلبا على مرضى سرطان الثدي. الأهداف: لتقييم فعالية التدخلات الصيدلانية في تحسين معرفة مرضى سرطان الثدي ومواقفهم وممارساتهم فيما يتعلق بالعلاج الكيميائي لسرطان الثدي.
Interleukin-33 [IL-33] is a specific ligand for the ST2 receptor, and a member of the
IL-1 family. It is a dual-function protein that acts both as an extracellular alarmin cytokine,
and an as an intracellular nuclear factor participates in maintaining barrier function by
regulating gene expression of IL-33 modulating tumor growth and anti-tumor immunity in
cancer patients. The present study aimed to investigate the role of IL-33 serum level and gene
polymorphism in Iraqi women with breast cancer. Materials and methods: Blood samples
were collected from 66 Iraqi patient women diagnosed with breast cancer, which were divided
into two groups: pre-treatment [PT] and under treatment with chemotherapy [UTC] patients in
In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample
... Show MoreBackground: Breast cancer remains a substantial cause of morbidity and mortality, there is a need for continued efforts to understand the etiology of the disease, maintain screening effort, implement prevention strategies, and develop better treatments.Objective: To analyze the risk factors, improve early detection and prevention of breast cancer in Al-Russafa district- Baghdad, aiming to increase survival rate and improve the quality of life.Methods: A cross sectional audit of 258 breast cancer cases seen at Al-Elwiya maternity teaching hospital from January2009 to December 2011,data collected from patients files were: age, gender , residency, marital status, parity, age at menarche and menopause age at first live birth, hormonal therap
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show More