Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum error rate, and the test maximum accuracy for K_value selection with an accuracy of 86.24%. Where the distance metric has been assigned using the Euclidean approach. From previous models, it seems that Breast Cancer Grade2 is the most prevalent type. For the future perspective, a comparative study could be performed to compare the supervised and unsupervised data mining algorithms.
Introduction and Aim: Diabetes mellitus patients almost always struggle with a metabolic condition known as chronic hyperglycemia. According to the World Health Organization, osteoporosis is a progressive systemic skeletal disorder that is characterized by decreasing bone mass and microstructural breakdown of bone tissue that increases susceptibility to fracture and increased risk of breaking a bone. Here, we aimed to compare the levels of CatK and total oxidative state in patients with diabetes and osteoporosis among the female Iraqi population and study the possible relationship between them. Materials and Methods: This study included 40 females with diabetes (Group G1), 40 with diabetes and osteoporosis (Group G2) and 40 normal healthy f
... Show MoreBACKGROUND: CRC is one of the most common cancers in the world. K-ras is proto-oncogene with GTPase activity that is lost when the gene is mutated. Analysis of K-ras mutational status is very important for CRC treatment, being the most important predictors of resistance to targeted therapy. OBJECTIVE: This study aims to determine the frequency and spectrum of K-ras mutation among Iraqi patients with sporadic CRC. PATIENTS, MATERIALS AND METHODS: This study enrolled 35 cases with sporadic CRC; their clinicopathological parameters were analyzed. The FFPE blocks were used for DNA extraction; PCR amplification of K-ras gene and hybridization of allele-specific oligoprobes were performed. The assay covers 29 mutations in the K-ras gene (codons 1
... Show MoreThis study was conducted at the College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad. The aim of this study was to isolate and diagnose fungi from fish feedstuff samples, and also detection of aflatoxin B1 and ochratoxin A in fish muscles and feedstuffs. Randomly, the samples were collected from some fish farms from Baghdad, Babil, Wasit, Anbar, and Salah al-Din provinces. This study included the collection of 35 feedstuff samples and 70 fish muscle samples, and each of the two fish samples fed on one sample of the feedstuff. The results showed the presence of several genera of different fungi including Aspergillus spp, Mucor spp., Penicillium spp., Yeast spp., Fusarium spp., Rhizopus spp., Scopiolariopsis spp., Ep
... Show MoreThe m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreBeyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreThe financial analysis of the published financial statements is the means that enables businessmen, financial institutions, financial analysts and others to conduct their studies and conclusions to obtain information that helps them in the decision-making process, including decisions related to investment. National in making the decision on the investment activity, for the period from 2012 to 2018, through the information provided by the annual financial statements, by selecting a set of indicators provided by the financial statements, namely (liquidity ratio, activity percentage, profitability ratios) to measure the extent of this ability Indicators in determining their role in making an investment decision.
The objective Effect of Internal and External Environment and its Psychological & Practical Reflection on the Political Decision-Making Process
This research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show More