Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum error rate, and the test maximum accuracy for K_value selection with an accuracy of 86.24%. Where the distance metric has been assigned using the Euclidean approach. From previous models, it seems that Breast Cancer Grade2 is the most prevalent type. For the future perspective, a comparative study could be performed to compare the supervised and unsupervised data mining algorithms.
The current study was designed to investigate the presence of aflatoxin M1 in 25 samples of pasteurized canned milk which collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin M1 was present in 21 samples, the concentration of aflatoxin M1 ranged from (0.25-50 ppb). UV radiation (365nm wave length) was used for detoxification of aflatoxin M1 (sample with highest concentration /50 ppb of aflatoxin M1 in two different volumes ((25 & 50 ml)) for two different time (15 & 30 min) and 30, 60, 90 cm distance between lamp and milk layer were used for this purpose). Results showed that distance between lamp and milk layer was the most effective parameter in reduction of aflatoxin M1, and whenever the distance increase the
... Show MoreBackground: Breast lump is one of the most common prevalent complaint of patients attending breast clinics.
Objective: To determine if there is any change in the pattern of common breast, diseases presenting as breast lumps between pregnant and non-pregnant women among patients attending Al-Elwiya Breast Clinic.
Methods: This is a cross – sectional study, with convent's patient sampling setting in AL-Elwiya Breast Cancer Early Detection Clinic from 1st Feb. to 1st May 2018, we collected data from patients with breast lumps including the age groups, pregnancy status, parity status, previous breast diseases, hormonal drugs, menstrual cycle, breast fe
... Show MoreVitamins k is an important fat-soluble vitamin that can be obtained from plants, bacteria and animals and is necessary for the blood clotting. It plays a key function as a cofactor in the synthesizing of blood clotting proteins in the liver; recently, the interest for its functions in extra-hepatic tissue has increased. Vitamin k deficiency is usually caused by abnormal absorption rather than in the lack of vitamin in food. Apart from its impact on clotting, chronic subclinical deficiency of vitamin K maybe a risk factor for many diseases such as osteoporosis, atherosclerosis, cancer, insulin resistance, neurodegenerative diseases and others, while current food intake guidelines be focused on the daily dose necessary to avoid blood loss.
... Show MoreThe notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.