Excessive water production is a persistent challenge in oil and gas wells, with polymer and gel solutions commonly employed for water control. This study investigates the rheological behaviour of cross-linked polyacrylamide gels and their impact on water shutoff treatment in gas wells. Rheological measurements, coreflooding experiments using Berea sandstone samples, and micromodel flow visualizations were conducted to evaluate gel performance. Results showed that during water injection, the water residual resistance factor ( Frrw ) decreases with increasing flow rates, mainly due to gel shear thinning behaviour and reduced residual gas saturation. Higher polymer concentrations in the gel enhance water permeability reduction. In contrast, under gas flow, shear thickening occurs in the gel when the gas flow exceeds a certain critical rate (Qgc), where the gas residual resistance factor ( Frrg) increases due to stretching the gel layer within the porous medium. Micromodel visualizations confirmed this deformation and highlighted gel effectiveness in reducing gas permeability at high flow rates. These findings provide novel insights into the flow dynamics of cross-linked gels and their applications in governing water production in gas formation.
In order to promote sustainable steel-concrete composite structures, special shear connectors that can facilitate deconstruction are needed. A lockbolt demountable shear connector (LB-DSC), including a grout-filled steel tube embedded in the concrete slab and fastened to a geometrically compatible partial-thread bolt, which is bolted on the steel section's top flange of a composite beam, was proposed. The main drawback of previous similar demountable bolts is the sudden slip of the bolt inside its hole. This bolt has a locked conical seat lug that is secured inside a predrilled compatible counter-sunk hole in the steel section's flange to provide a non-slip bolt-flange connection. Deconstruction is achieved by demounting the tube from the t
... Show MoreTransient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t
... Show MoreAbstract
All central air conditioning systems contain piping system with various components, sizes, material, and layouts. If such systems in operating mode, the flow in piping system and its component such as valves can produce severe vibration due to some flow phenomenon’s. In this research, experimental measurements and numerical simulation are used to study the flow-induced vibration in valves. Computational fluid dynamics (CFD) concepts are included with one-way and two-way fluid-structure interaction concepts by using finite element software Package (ANSYS 14.57). Detection analysis is performed on flow characteristics under operation conditions and relations with structural vibration. Most of
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
The present study was conducted to evaluate the effect of variation of influent raw water turbidity, bed composition, and filtration rate on the performance of mono (sand) and dual media (sand and anthracite) rapid gravity filters in response to the effluent filtered water turbidity and headloss development. In order to evaluate each filter pe1formance, sieve analysis was made to characterize both media and to determine the effective size and uniformity coefficient. Effluent filtered water turbidity and the headloss development was recorded with time during each experiment.
This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.
In this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.