The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed adaptation law in this work. These are the control input is a positive quantity, and it limited by a maximum value. The maximum allowable desired outlet cold water has been estimated as function of heat exchanger parameters and maximum control input. The simulation results demonstrate the performance of the proposed adaptive sliding mode control where the outlet cold water was forced to follow desired temperature equal to 45𝑜 . Additionally, the robustness of the proposed controller was tested for the case where the cold water inlet temperature is not constant, and also for the case of heat exchanger parameters uncertainty. The results were revealed the robustness of the proposed controller.
Abstract Bilastine, a second-generation antihistamine, is commonly prescribed for managing allergic rhinoconjunctivitis and urticaria due to its prolonged action. However, its therapeutic potential is constrained by poor water solubility and low oral bioavailability. This study aimed to enhance bilastine dissolution and patient compliance by formulating a nanosuspension-based orodispersible film (ODF). An anti-solvent precipitation method was employed to produce nanosuspension using different hydrophilic stabilizers (Soluplus®, Poloxamer 188, and PEG 6000). The influence of formulation parameters, such as the stabilizer ratio, the anti-solvent ratio, stirring speed, and the stabilizer type, on particle size and polydispersity index (PDI)
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreIn the present study, semi – batch experiments were conducted to investigate the efficiency of ozone microbubbles (OMBs) in the treatment of aqueous dye solutions methylene orange under different reaction conditions such as effect of initial solution pH , ozone generation rate and initial MO-concentration. The results showed that the removal of MO by OMBs were very high at the acidic and alkaline media and upon increasing the generation rate of ozone from 0.498 to 0.83 mg/s, the removal efficiency dramatically increased from 75to 100% within 15 min. The rate of oxidation reaction followed a pseudo first- order kinetic model. The results demonstrated that OMBs is efficient in terms of the decline of methylene orange c
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreDensity functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically and experimentally her in. Solar chimney was designed, manufactured and tested by selecting different positions of air entrance namely: bottom entrance, side entrance, and both side and bottom entrances. The effect of integrating the chimney with paraffin (phase change material) on its thermal behavior has been also investigated. CFD analysis based on finite volume method is used to predict the thermal performance, and fluid flow in two-dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation, and inclination angle. Experimental results show that a solar chi
... Show More