The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element model has almost the same shape and pattern of the experimental one. The curves in both situations become more and more resembling as the load increasing till they reach failure.
The Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<
... Show MoreThe present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te
This work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Ze
... Show MoreIn the present work, bentonite clay was used as an adsorbent for the removal of a new prepared mono azo dye, 4-[6-bromo benzothiazolyl azo] thymol (BTAT) using batch adsorption method. The effect of many factors like adsorption time, adsorbent weight, initial BTAT concentration and temperature has been studied. The equilibrium adsorption data was described using Langmuir and frundlich adsorption isotherm. Based on kinetics study, it was found that the adsorption process follow pseudo second order kinetics. Thermodynamics data such as Gibbes Free energy ∆Gᵒ, entropy ∆Sᵒ and ∆Hᵒ were also determined using Vant Hoff plot.
In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreIn this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate) on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH)2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were comp
... Show MoreSawdust has the ability to adsorb the dyestuff from aqueous solution. It may be useful low cost adsorbent for the treatment of effluents, discharged from textile industries. The effectiveness of sawdust has been tested for the removal of color from the wastewater samples containing two dyes namely Direct Blue (DB) and Vat Yellow (VY). Effect of various parameters such as agitation time, adsorbent dose and initial concentration of each dye has been investigated in the present study. The adsorption of dyes has been tested with various adsorption isotherm models. The Langmuir isotherms model is found to be the most suitable one for the dye adsorption using sawdust and the maximum adsorption capacity is 8.706 mg/g and 6.975 mg/g for DB and V
... Show MoreThis paper reports test results and describes a numerical investigation of the effectiveness of using carbon fibre reinforced polymer (CFRP) fabrics for strengthening concrete cylinders that have been undamaged and damaged due to heating under preload. The purpose of this research was to investigate whether there is any difference in the performance of CFRP-wrapped cylinders if the wrapping is done under preload, and those for which neither heating, cooling nor wrapping was done under preload. The cylinders were exposed to 30% of maximum load at ambient temperature during heating and cooling before being wrapped under preload. Of 18 Ø 100 × 200 mm identical cylinders, 6 were left as control samples without heating, 12 were exposed t
... Show MoreThe steel jetty selected for strengthening is in Baghdad city, over Tigris River, consists of 55 short spans, each of approximately 4 meters and one naviga-tional opening of 12 m. The bridge is 224 meters length and 8 meters in width. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to abnormal loads of 380 tons. A strengthening system which installed in spring 2008 was used where the main concept is to depend on added side supporting elements which impose reversal forces on the bridge to counteract most of the loads expected from the abnormal heavy loads. The bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengt
... Show More