n this work, the adsorption of crystal violet dye from aqueous solution on charcoal and rice husk has been investigated, where the impact of variable factors (contact time; the dosage of adsorbent, pH, temperature, and ionic strength) have been studied. It has been found that charcoal and rice husk have an appropriate adsorption limit with regards to the expulsion of crystal violet dye from fluid arrangements. The harmony adsorption is for all intents and purposes accomplished in 45 min for charcoal and 60 min for rice husk. The amount of crystal violet dye adsorbed (0.4 g of charcoal and 0.5 g of rice husk) increased with an increasing pH and the value of 11 is the best. The effect of temperature on the adsorption process was studied at the range (298-323) K. The test comes about were broken down by utilizing Freundlich and Tempkin isotherm models, where the Freundlich and Tempkin factors were determined, and it has been found that the adsorption isotherm obey the Freundlich isotherm. The effect of ionic strength on the adsorption process was studied also via sodium chloride electrolyte solution; the results have been revaled that the sodium ion has a positive impact on the adsorption process. The thermodynamic parameters are shown estimated as ∆H values were 2.8012 kJ mol-1 and 5.8252 kJ mol-1 for charcoal and rice husk, respectively; this behavior referred to endothermic adsorption
Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreSystemic lupus Erythematosus is an autoimmune disease of unknown aetiology affecting multiple organ system. Reactive nitrogen and oxygen species are claimed to play a role in this disease. However, the potential of Nitrosative/Oxidative Stress to elicit an autoimmune, response remain till now largely unexplored in humans. This study was done to investigate the status and contribution of nitrosative/oxidative stress in Iraqi patients for systemic lupus erythematosus. Blood samples from 19 patients with systemic lupus erythematosus and 19 age-and sex- matched apparently healthy controls were evaluated for serum levels of nitrosative/oxidative stress markers including nitric oxide, peroxynitrite and malondialdehyde. Nitric oxide levels were
... Show MorePhotocatalyst composed of core/shell magnetic zincoxysulfide nanocomposite coated with sulfonated polyindole ([email protected]/SPID) has been prepared and used for simultaneous photocatalytic H2 production and Bisphenol A (BPA) degradation. XRD, FE-SEM, EDX, BET surface area, UV-vis DRS and VSM were used to characterize the synthesized nanocomposites. The photocatalytic performance was evaluated using batch reactor under visible light irradiation. The photocatalytic activity of [email protected]/SPID nanocomposite was revealed to exceed that of [email protected] nanocomposite due to the heterojunctions between SPID and [email protected] species. The results exhibited that the effect of BPA initial concentration was found to be effectual on the improvement
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreIn this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show More4 Blood Res 2018;53:314-319. Received on August 11, 2018 Revised on August 30, 2018 Accepted on August 30, 2018 Background Iron overload is a risk factor affecting all patients with thalassemia intermedia (TI). We aimed to determine whether there is a relationship of serum ferritin (SF) and alanine ami- notransferase (ALT) with liver iron concentration (LIC) determined by R2 magnetic reso- nance imaging (R2-MRI), to estimate the most relevant degree of iron overload and best time to chelate in patients with TI. Methods In this cross-sectional study, 119 patients with TI (mean age years) were randomly se- lected and compared with 120 patients who had a diagnosis of thalassemia major (TM). Correlations of LIC, as determined by R2-MRI, with SF
... Show MoreThe introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing