طريقة سهلة وبسيطة ودقيقة لتقدير السبروفلوكساسين في وجود السيفاليكسين او العكس بالعكس في خليط منهما. طبقت الطريقة المقترحة بطريقة الاضافة القياسية لنقطة بنجاح في تقدير السبروفلوكساسين بوجود السيفاليكسين كمتداخل عند الاطوال الموجية 240-272.3 نانوميتر وبتراكيز مختلفة من السبروفلوكساسين 4-18 مايكروغرام . مل-1 وكذلك تقدير السيفاليكسين بوجود السبروفلوكساسين الذي يتداخل باطوال موجية 262-285.7 نانوميتر وبتراكيز مختلفة من السيفاليكسين 6-18 مايكروغرام . مل-1 في مزيج لهما. اظهرت النتائج عدم وجود اي تداخلات من قبل المواد المضافة التي تحتويها الادوية على هذه المركبات وضمن حدود كشف السبروفلوكساسين يساوي 0.1732 مايكروغرام . مل-1 وعقارالسيفاليكسين يساوي 0.4620 مايكروغرام . مل-1 . الانحراف القياسي النسبي المئوي اقل من 2% . تم تطبيق الطريقة بنجاح لتقدير العقارين في بعض المستحضرات الصيدلانية. تعتبر الطريقة المقترحة من الطرق القليلة التكلفة وعدم حاجتها الى ادخال الادوية في سلسلة من التفاعلات وتثبيت لظروف التفاعل لغرض تقديرها وانما تتم عن طريق تقدير الدواء بعد اذابته مباشرة في الماء المقطر بوجود العقار الاخر معه في مزيج وتعتبر من الطرق الناجحة في التقدير خاصة للادوية المتقاربة في طيف الامتصاص لها والتي من غير الممكن ايجاد طرق لفصل الدوائين وتقديرهما بصورة ادق من هذه الطريقة المقترحة دون التداخل وتاثير احدهما على الاخر. الطريقة المقترحة في هذا البحث كانت ناجحة في تقدير كل من السبروفلوكساسين والسيفاليكسين في مزيج لهما دون تداخل دواء مع الاخر.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreIn this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreIn this work ,the modified williamos-Hall method was used to analysis the x-ray diffraction lines for powder of magnesium oxide nanoparticles (Mgo) .and for diffraction lines (111),(200),(220),(311) and (222).where by used special programs such as origin pro Lab and Get Data Graph ,to calculate the Full width at half maximum (FWHM) and integral breadth (B) to calculate the area under the curve for each of the lines of diffraction .After that , by using modified Williamson –Hall equations to determin the values of crystallite size (D),lattice strain (ε),stress( σ ) and energy (U) , where was the results are , D=17.639 nm ,ε =0.002205 , σ=0.517 and U=0.000678 respectively. And then using the scherrer method can by calculated the crystal
... Show MoreA simple, rapid, accurate and sensitive spectrophotometric method has been developed for the determing carbamate pesticides in both pure and water samples. The method is appropriate for the determination of carbofuran in the presence of other ingredients that are usually available in dosage forms. The effect of organic solvents on the spectrophotometric properties of the azo dye and the structure of the resulting product have also been worked out and it is found to be 1:1 benzidine :carbofuran. The method can be successfully applied to determination of carbofuran in water samples. The method is based on diazotization of Benzidine (4, 4 – diamino biphenyl) with sodium nitrite and hydrochloric acid followed by coupling with carbofuran
... Show More