Let
In this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module M = M1M2 . If M2 is M1 – y-closed projective , then for every y-closed submodule N of M with M = M1 + N , there exists a submodule M`of N such that M = M1M`.
This paper consist some new generalizations of some definitions such: j-ω-closure converge to a point, j-ω-closure directed toward a set, almost j-ω-converges to a set, almost j-ω-cluster point, a set j-ω-H-closed relative, j-ω-closure continuous mappings, j-ω-weakly continuous mappings, j-ω-compact mappings, j-ω-rigid a set, almost j-ω-closed mappings and j-ω-perfect mappings. Also, we prove several results concerning it, where j Î{q, δ,a, pre, b, b}.
Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that .
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule of an R-module is called Pr- maximal if ,for any submodule of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule
of an R-module is named near (N-maximal) whensoever is pure submodule of such that then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of is Pr-maximal. A ring is named Pr-ring if whole proper ideal of is a Pr-maximal ideal, we offer the concept pure local (Pr-loc
... Show MoreLet M be an R-module, where R be a commutative;ring with identity. In this paper, we defined a new kind of submodules, namely; ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let K H M, K is called ET-Coessential of H in M (K⊆ET.ce H), if . A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by (K⊆ET.cc H) , that is, K⊆ET.ce H implies that K = H. In our work, we introduce;some properties of ET-coessential and ET-coclosed submodules of M.