A lack of adequate building maintenance is a significant obstacle faced by governmental hospitals. This paper evaluates factors that negatively impact building-maintenance practices in Iraq. A literature review was conducted to identify factors affecting maintenance. A list of 42 factors affecting hospital-buildings was collected from previous studies and tested using a structured questionnaire distributed to hospital-maintenance experts. During the data analysis, 76 valid questionnaires were used. Based on the respondents’ ratings, the relative-importance index (RII) was used to determine the level of importance of each factor. From the results, it was concluded that twelve factors affect maintenance practices in hospital buildings: faulty design (0.889), lack of funding (0.874), inadequate training (0.871), misuse of building facilities (0.866), construction errors (0.863), lack of work experience (0.858), building age (0.826), individual modifications carried out by the hospital staff (0.826), shortage of maintenance staff (0.824), administrative corruption (0.821), selection of unqualified maintenance contractors (0.816) and unavailability of skilled appointed maintenance personnel (0.808). Understanding these factors’ effects is essential for maintenance-department managers to develop strategies for maintaining hospital buildings in Iraq by controlling them, as well as identifying problems and finding appropriate solutions to avoid them. KEYWORDS: Governmental hospitals, Maintenance, Iraq, Building maintenance, Maintenance practices, Factors affecting maintenance
While traditional energy sources such as oil, coal, and natural gas drive economic growth, they also seriously affect people’s health and the environment. Renewable energies (RE) are presently seen as an efficient choice for attaining long-term sustainability in development. They provide an adequate response to climate change and supply sufficient electricity. The current situation in Iraq results from a decades-long scarcity of reliable electricity, which has impacted various industries, including agriculture. There are diverse prospects for using renewable energy sources to address the present power crisis. The economic and environmental impacts of renewable energy systems were investigated in this study by using the solar pumpi
... Show MoreObjective. This study aimed to evaluate the orthodontic bond strength and enamel-preserving ability of a hydroxyapatite nanoparticles-containingself-etch system following exposure to various ageing methods. Materials and Methods. Hydroxyapatite nanoparticles (nHAp) were incorporated into an orthodontic self-etch primer (SEP, Transbond™ plus) in three different concentrations (5%, 7%, and 9% wt) and tested versus the plain SEP (control) for shear bond strength (SBS), adhesive remnant index (ARI) scores, and enamel damage in range-finding experiments using premolar teeth. The best-performing formulation was further exposed to the following four artificial ageing methods: initial debonding, 24 h water storage, one-month water stora
... Show MoreFisetin is a plant flavonoid found in strawberries and other fruits and vegetables such as apples, persimmons, and onions. It has many pharmacological effects like anti-inflammatory, antioxidant, cardioprotective, neuroprotective, and anti-carcinogenicity which are attributed to its ability to reduce oxidative stress which considers the main reason for different disease conditions. Genotoxicity refers to the genetic material destruction within the cell which can be caused by different chemicals as well as radiation. The present study evaluates the effect of orally-administered fisetin daily for seven constitutive days on genotoxicity induced by cyclophosphamide in rats’ bone marrow and spleen cells. Results showed that fisetin exh
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were st
... Show MoreA simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid‐phase extraction of 8‐hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4‐diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbe
Resin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This
This study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreIn this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a