The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every essential submodule of M is P-rational in M. We study this kind of module in some detail and introduced some characterizations of the P-polyform module and its relationships with some other modules. The third kind of module in this thesis is called fully polyform module, and it is contained in the class of polyform module. A module M is said to be fully polyform, if every P-essential submodule of M is rational in M, that is Hom_R(M/N, E(M))=0 for every P-essential submodule N of M. In fact, the class of fully polyform modules lies between polyform modules and essentially quasi-Dedekind modules. The main characteristics of fully polyform modules were investigated, and some characterizations of these types of modules were established. Furthermore, the relationships between this class and other related modules were examined.
Our aim in this paper is to introduce the notation of nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule of an -module is called nearly primary-2-absorbing submodule if whenever , for , , , implies that either or or . We got many basic, properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules were inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under -epimorphism was studied.
Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an
... Show MoreThis study was carried out to find out the effect of germination of broad beans and chickpeas seeds for different periods on the sensory properties of homus bethina and falafel. The results revealed that the studied properties were significantly different (P<0.05) in tenderness, flavor and overall acceptance as compared to control samples. While other properties such as appearance, body (texture), leavening and color did not showed significant differences.It was found that treatment B1 (100% germinated broad beans) varied significantly in tenderness in comparison with control samples.Treatment B3 (75% ordinary bread beans + 25% germinated broad beans) revealed significant differences (P<0.05) in both flavor and overall acceptance as compar
... Show MoreThe main purpose of this paper is to introduce and prove some fixed point theorems for two maps that
satisfy -contractive conditions with rational expression in partially ordered metric spaces, our results improve and unify a multitude of fixed point theorems and generalize some recent results in ordered partially metric space.
The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.
Background Over the past decade there has been a growing awareness of, and interest in, the trace element concentration differences between normal and diseased tissues. Significant changes in tissue concentrations of Zinc (Zn) and Copper (Cu) have been previously reported in inflammation and cancer of certain human tissues.
Aim:(1)To correlate between Zn and Cu concentrations and the histological picture of normal and certain inflamed human tissues, namely the gall bladder (GB) the vermiform appendix (VA), visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). (2) to detect whether there is a difference in the above-mentioned parameters between VAT and SAT. (3) to obtain recordings for trace element levels in human tissu
The research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show More