Preferred Language
Articles
/
PRdyXo8BVTCNdQwCVHTq
Text Steganography Based on Arabic Characters Linguistic Features and Word Shifting Method
...Show More Authors

In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harnesses the unique attributes of this language, encompassing its complex character designs, diacritical marks, and ligatures, to effectively protect information. In this work, we propose a new text steganography method based on Arabic language characteristics concealment, where the proposed method has two levels of security which are: Arabic encoding and word shifting. In the first step, build a new Arabic encoding mapping table to convert an English plaintext to Arabic characters, then use a word shifting process to add an authentication phase for the sending message and add another level of security to the achieved ciphertext. The proposed method showed that Arabic language characteristics steganography achieved 0.15 ms for 1 k, 1.0033 ms for 3 k, 2.331 ms for 5 k, and 5.22 ms for 10 k file sizes respectively.

Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Apr 05 2023
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
A Partial Face Encryption in Real World Experiences Based on Features Extraction from Edge Detection
...Show More Authors

User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Early detection of breast cancer mass lesions by mammogram segmentation images based on texture features
...Show More Authors

Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Journal Of The College Of Languages (jcl)
Notes on Deletion Not Dependent on Linguistic Context
...Show More Authors

The aim of this paper is to examine cases of deletion not dependent on linguistic context. Perlmutter (1971) claims that any sentence other than an imperative1 in which there is an S that does not contain a subject in the surface structure is ungrammatical. Dillon (1978) counts elliptical sentences such as ^ Beg your pardon2 as grammatically incomplete (and hence as strictly ungrammatical). Such statements are, however, not without problems for reasons that will be given below.

View Publication Preview PDF
Publication Date
Thu Dec 03 2015
Journal Name
Iraqi Journal Of Science
New multispectral images classification method based on MSR and Skewness implementing on various sensor scenes
...Show More Authors

Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization Drilling Parameters of Aluminum Alloy Based on Taguchi Method
...Show More Authors

This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Thu Aug 01 2019
Journal Name
2019 2nd International Conference On Engineering Technology And Its Applications (iiceta)
A Survey on Linguistic Interpretation of Facial Expressions and Technologies
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref