In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreActive Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of applications. Their exclusive appealing features make them suitable for solving traditional rotor-bearing problems using novel design approaches for rotating machinery. In this paper, a linearized uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on Lyapunov function for the electromechanical system. The controller requires measurements of the rotor displacements and their derivatives. Since the control law is discontinuous, the proposed controller can achieve a finite time regulation but with the drawback of the chattering problem. To reduce the effect of this problem, the gain of the uni
... Show MoreThe current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreElectrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreIn this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.