Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surface without any external positional tracking. This new hybrid technique has the potential to improve surgical localisation in procedures such as sentinel lymph node biopsy.
الذات والتحصيل الدراسي . وقد استخدمت الباحثة المنهج الوصفي التحليلي، وبلغت عينة الدراسة (500) طالبًا وطالبة، تم اختيارهم بالطريقة الطبقية العشوائية وهي تمثل (15%) من مجتمع الدراسة البالغ (3328) طالباً وطالبة من طلبة المرحلة الإعدادية واستخدمت الباحثة مقياسين تم بناء مقياس لقياس الجوهر والمظهر وتبني مقياس فاعلية الذات بعد إن قامت بترجمته وتعريبه وجعله ملائم للبيئة العراقية، كم تم استخراج درجات التحصيل الدراسي للع
... Show MoreSequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More