Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surface without any external positional tracking. This new hybrid technique has the potential to improve surgical localisation in procedures such as sentinel lymph node biopsy.
This work aims to investigate the dependence of gravitational lensing properties on the lens redshift and source redshift.
The angular diameter distance hereafter referred to as ADD has been determined using two different numerical integral methods, Simpson's rule, and definite integral methods. Both of those two methods gave identical results. In addition, observational data of gravitational Lensing systems have been used to find the most probable value of lens redshift and source redshift. The result showed that the lens redshift and source redshift are more likely to occur in the ranges of zL=0.2-0.6 and zS=1-3, respectively.
Einstein radius and the critical surface mass density
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreIn this paper, chaotic and periodic dynamics in a hybrid food chain system with Holling type IV and Lotka-Volterra responses are discussed. The system is observed to be dissipative. The global stability of the equilibrium points is analyzed using Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is characterized by attractors and bifurcation diagram. The effect of the controlling parameter of the model is investigated theoretically and numerically.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreIt is very difficult to obtain the value of a rock strength along the wellbore. The value of Rock strength utilizing to perform different analysis, for example, preventing failure of the wellbore, deciding a completion design and, control the production of sand. In this study, utilizing sonic log data from (Bu-50) and (BU-47) wells at Buzurgan oil field. Five formations have been studied (Mishrif, Sadia, Middle lower Kirkuk, Upper Kirkuk, and Jaddala) Firstly, calculated unconfined compressive strength (UCS) for each formation, using a sonic log method. Then, the derived confined compressive rock strengthens from (UCS) by entering the effect of bore and hydrostatic pressure for each formation. Evaluations th
... Show More