Preferred Language
Articles
/
PRdgWJMBVTCNdQwCs9Hu
Stereoscopic portable hybrid gamma imaging for source depth estimation
...Show More Authors
Abstract<p>Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surface without any external positional tracking. This new hybrid technique has the potential to improve surgical localisation in procedures such as sentinel lymph node biopsy.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jun 30 2022
Journal Name
Ipri Journal
Hybrid regimes: An Overview
...Show More Authors

According to different types of democracy Indexes, hybrid regimes or those in the gray zone, make up the majority of regime transformations in the third wave of democracy. However, after nearly three decades, conceptual confusion about hybrid regimes persists and grows, while obstructing the accumulation of knowledge about the nature of hybrid regimes. This leads to significant political repercussions for democratization. This Paper attempts to provide a clearer view of different and overlapping concepts and classifications in this complex field, and sustain development in literature on democratic transformation. To achieve this, we followed an approach based on the classification of concepts and terms in three distinct categories, b

... Show More
View Publication Preview PDF
Crossref (3)
Clarivate Crossref
Publication Date
Thu Jan 24 2019
Journal Name
Al-kindy College Medical Journal
Role of MRI diffusion weighted imaging in differentiation between benign and malignant ovarian masses
...Show More Authors

Background: Characterization of the ovarian masses preoperatively is important to inform the surgeon about the possible management strategies. MRI may be of great help in identifying malignant lesion before surgery. Diffusion Weighted Imaging (DWI) is a sensitive method for changes in proton of water mobility caused by pathological alteration of tissue cellularity, cellular membrane integrity, extracellular space perfusion, and fluid viscosity.

Objective: to study the diagnostic accuracy of DWI in differentiation between benign and malignant ovarian masses.

Type of the study:Cross-sectional study.

Methods: this study included  53with complex

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Assessment of image quality of cervical spine complications using Three Magnetic Resonance Imaging Sequences
...Show More Authors

Examining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Jun 01 2015
Journal Name
المؤتمر العلمي التخصصي الحادي والعشرون لكلية التربية/ الجامعة المستنصرية 22-23 نيسان 2015 الفيزياء
Computer Simulations of Imaging a Dirac Delta Function by a Ground-Based Optical Telescope
...Show More Authors

Two- dimensional numerical simulations are carried out to study the elements of observing a Dirac point source and a Dirac binary system. The essential features of this simulation are demonstrated in terms of the point spread function and the modulation transfer function. Two mathematical equations have been extracted to present, firstly the relationship between the radius of optical telescope and the distance between the central frequency and cut-off frequency of the optical telescope, secondly the relationship between the radius of the optical telescope and the average frequency components of the modulation transfer function.

Preview PDF
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Hybrid compensation of polarization-multiplexed QPSK optical format for high bit rate networks
...Show More Authors

<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digi

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref