Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-consuming methods in their own right. MCS-FORM involves running multiple MCS, and the time required increases with problem complexity and desired precision. ANN-FORM, on the other hand, can be faster for repetitive reliability assessments, but the training phase can be computationally expensive, and accuracy depends on training data quality and quantity. To address this computational challenge and enhance the efficiency of reliability analysis, a novel method is proposed in this paper. This method leverages the capabilities of ABAQUS, in combination with MATLAB. The key objective of this proposed approach is to automate and streamline the repetitive tasks involved in reliability analysis, thereby significantly reducing the computational time required for such analyses. The method is based on the development of a custom ABAQUS Python script file, which interfaces with MATLAB. The script serves as a bridge between the finite element analysis capabilities of ABAQUS and the data processing and analysis capabilities of MATLAB. An illustrative example was considered to demonstrate the application of the proposed method. In this example, a deteriorated simply supported concrete beam with an implicit performance function was analysed. The objective was to assess the reliability of the beam under the given conditions. To perform this reliability analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of these methods were implemented in conjunction with the newly developed approach that integrates ABAQUS and MATLAB. The results of this analysis were quite promising. Both MCS-FORM and ANN-FORM successfully estimated the reliability of the concrete beam, and they exhibited a high level of agreement in their assessments. This presented method demonstrates its suitability for the application of reliability analysis in scenarios such as the one presented. Its efficiency in automating repetitive tasks not only simplifies the analysis process but also facilitates the generation of multiple simulations. By doing so, it significantly minimizes the time and computational resources required for reliability assessments.
This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreAcinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreIn Computer-based applications, there is a need for simple, low-cost devices for user authentication. Biometric authentication methods namely keystroke dynamics are being increasingly used to strengthen the commonly knowledge based method (example a password) effectively and cheaply for many types of applications. Due to the semi-independent nature of the typing behavior it is difficult to masquerade, making it useful as a biometric. In this paper, C4.5 approach is used to classify user as authenticated user or impostor by combining unigraph features (namely Dwell time (DT) and flight time (FT)) and digraph features (namely Up-Up Time (UUT) and Down-Down Time (DDT)). The results show that DT enhances the performance of digraph features by i
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThis paper presents a vibration suppression control design of cantilever beam using two piezoelectric patches. One patch was used as an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state estimation error is proved bounded. An optimal LQR controller is designed then using the estimated states with the slid
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show More