Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-consuming methods in their own right. MCS-FORM involves running multiple MCS, and the time required increases with problem complexity and desired precision. ANN-FORM, on the other hand, can be faster for repetitive reliability assessments, but the training phase can be computationally expensive, and accuracy depends on training data quality and quantity. To address this computational challenge and enhance the efficiency of reliability analysis, a novel method is proposed in this paper. This method leverages the capabilities of ABAQUS, in combination with MATLAB. The key objective of this proposed approach is to automate and streamline the repetitive tasks involved in reliability analysis, thereby significantly reducing the computational time required for such analyses. The method is based on the development of a custom ABAQUS Python script file, which interfaces with MATLAB. The script serves as a bridge between the finite element analysis capabilities of ABAQUS and the data processing and analysis capabilities of MATLAB. An illustrative example was considered to demonstrate the application of the proposed method. In this example, a deteriorated simply supported concrete beam with an implicit performance function was analysed. The objective was to assess the reliability of the beam under the given conditions. To perform this reliability analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of these methods were implemented in conjunction with the newly developed approach that integrates ABAQUS and MATLAB. The results of this analysis were quite promising. Both MCS-FORM and ANN-FORM successfully estimated the reliability of the concrete beam, and they exhibited a high level of agreement in their assessments. This presented method demonstrates its suitability for the application of reliability analysis in scenarios such as the one presented. Its efficiency in automating repetitive tasks not only simplifies the analysis process but also facilitates the generation of multiple simulations. By doing so, it significantly minimizes the time and computational resources required for reliability assessments.
Self-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, t
... Show MoreSelf-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72
... Show MoreDBNRHM Sami, International Journal of Research in Social Sciences and Humanities, 2020
The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreThrough the early childhood and after the ablactating the child learns acquired food habbits that might studying with him throughout his life. Here the parents role arises: teaching the child the sound food habits and hygienic styles and whatever beneficial to the health and with the sufficient quantities for the body. In this way the experiences the child learns at home will be of great help in his future life in choosing the suitable food after becoming more dependent in making his decisions and choices away from his parents. The results in this study showed that the averages of the children’s consumption of the high energy foods in comparison with the other highest consumption average , after that comes the con sumption of soft drills
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show More