Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-consuming methods in their own right. MCS-FORM involves running multiple MCS, and the time required increases with problem complexity and desired precision. ANN-FORM, on the other hand, can be faster for repetitive reliability assessments, but the training phase can be computationally expensive, and accuracy depends on training data quality and quantity. To address this computational challenge and enhance the efficiency of reliability analysis, a novel method is proposed in this paper. This method leverages the capabilities of ABAQUS, in combination with MATLAB. The key objective of this proposed approach is to automate and streamline the repetitive tasks involved in reliability analysis, thereby significantly reducing the computational time required for such analyses. The method is based on the development of a custom ABAQUS Python script file, which interfaces with MATLAB. The script serves as a bridge between the finite element analysis capabilities of ABAQUS and the data processing and analysis capabilities of MATLAB. An illustrative example was considered to demonstrate the application of the proposed method. In this example, a deteriorated simply supported concrete beam with an implicit performance function was analysed. The objective was to assess the reliability of the beam under the given conditions. To perform this reliability analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of these methods were implemented in conjunction with the newly developed approach that integrates ABAQUS and MATLAB. The results of this analysis were quite promising. Both MCS-FORM and ANN-FORM successfully estimated the reliability of the concrete beam, and they exhibited a high level of agreement in their assessments. This presented method demonstrates its suitability for the application of reliability analysis in scenarios such as the one presented. Its efficiency in automating repetitive tasks not only simplifies the analysis process but also facilitates the generation of multiple simulations. By doing so, it significantly minimizes the time and computational resources required for reliability assessments.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe longitudinal electron scattering form factors and the electric quadrupole moments are calculated for the states with Jπ T= 3+0 (ground state) and 1+ 0 (583keV excited state) of 22Na and Jπ T= 3+2 (ground state) of 26Na. Shell model calculations are based on USDA, USDB and Wildenthal interactions. The exact center of mass correction is included in Born approximation picture to generate the longitudinal form factors. The core polarization (CP) effect with the values of effective nucleon charges ep=1.35, en= 0.35, with Bohr Mottelson formula gave a good agreement with the measured electric quadrupole moments. The structure of th
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
The utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete
... Show MoreThe Paleocene benthic foraminiferal zonation of the Umm Er Rhadhuma Formation from the borehole (K.H 12/7), South Anah City (Western Iraq), has been re-studied and re-analyzed precisely based on the large benthic foraminifera (LBF). They are represented by two biozone Rotorbinella hensoni Partial Range Zone, recorded from the Lower and middle parts of the Umm Er Rhadhuma Formation and Lockhartia praehaimei Partial Range Zone determined Uppermost of this unit, and dated to be the Selandian – Thanetian stage. Almost all the biogenic (micro and macro) and non-biogenic constituents, including large benthic foraminifera, Algae, Echinoderm, Bryozoans, Oyster, Gastropod fragments, and peloids, in addition to lithofacies types, indicate t
... Show MoreInelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV
,
(7.55 )
2
1
2
5
MeV
(15.11 )
2
3
2
3
MeV
states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions