Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-consuming methods in their own right. MCS-FORM involves running multiple MCS, and the time required increases with problem complexity and desired precision. ANN-FORM, on the other hand, can be faster for repetitive reliability assessments, but the training phase can be computationally expensive, and accuracy depends on training data quality and quantity. To address this computational challenge and enhance the efficiency of reliability analysis, a novel method is proposed in this paper. This method leverages the capabilities of ABAQUS, in combination with MATLAB. The key objective of this proposed approach is to automate and streamline the repetitive tasks involved in reliability analysis, thereby significantly reducing the computational time required for such analyses. The method is based on the development of a custom ABAQUS Python script file, which interfaces with MATLAB. The script serves as a bridge between the finite element analysis capabilities of ABAQUS and the data processing and analysis capabilities of MATLAB. An illustrative example was considered to demonstrate the application of the proposed method. In this example, a deteriorated simply supported concrete beam with an implicit performance function was analysed. The objective was to assess the reliability of the beam under the given conditions. To perform this reliability analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of these methods were implemented in conjunction with the newly developed approach that integrates ABAQUS and MATLAB. The results of this analysis were quite promising. Both MCS-FORM and ANN-FORM successfully estimated the reliability of the concrete beam, and they exhibited a high level of agreement in their assessments. This presented method demonstrates its suitability for the application of reliability analysis in scenarios such as the one presented. Its efficiency in automating repetitive tasks not only simplifies the analysis process but also facilitates the generation of multiple simulations. By doing so, it significantly minimizes the time and computational resources required for reliability assessments.
AbstractIn the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s
... Show More
Development of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreAn experiment was conducted using pots (capacity of 4 kg soil/pot) in the glasshouse of Biology Dept. College of Education (Ibn Al-Haitham) University of Baghdad during 2008-2009 growing season, in order to determine the effect of different levels of urea fertilizer (Zero, 0.1, 0.2, 0.4 gm/4 kg soil in pot) these equal to (Zero, 100,200,400 kg/ha) and different levels of superphosphate fertilizer (Zero, 0.1, 0.2 gm/4kg soil in pot), these equal to (Zero, 100,200 kg/ha) on some morphological and physiological characteristics of fenugreek plant. This experiment was conducted using Completely Randomized Design (CRD) with three replications and the experiment included (36) pots. Results indicated clear increase in all studied characteristics wi
... Show MoreBackground: Titanium implant is widely used in dentistry because of its extraordinary biocompatibility and mechanical properties. To increase bone–implant connection and provide early loading after placement, implant is stored in different storage medium and treated with UV light. Both of them are applicable methods to increase the bioactivity of titanium and overcome the biological aging. This study was designed to assess the effect of vacuum storage method and air storage with and without UV light treated of Cp Ti implant mechanically and histologically. Materials and methods: Titanium screws were acid etched and prepared in four different modes using different storage methods (air or vacuum and, with or without UV treatment. The implan
... Show MoreStaphylococcus aureus is one of the common causative agents of infections, from asymptomatic carriers to healthy individuals. It can colonize anterior nares of carriers with a high capability to resist different antibiotics. Students are susceptible to bacterial infection due to some factors, including poor health habits and surrounding school conditions. This study screened the rate of vancomycin- and methicillin- resistant Staphylococcus aureus nose carriers among secondary students in rural and urban schools and its association with some sociodemographic factors. The study sample included 300 male/female students aged 15-20 years from 12 schools of rural and urban areas during the period from November 2020 till May 2021. It was fo
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
This article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreGypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show More