Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images.This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, newfeatures, and applications. Itstarts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance.Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening
The purpose of this research shed light on the analysis of the relationship between the knowledge gap and the strategic performance gap and diagnose the level of impact this relationship in building a learning organization, and sought search to achieve a number of goals, cognitive and Applied been tested nature of the relationship and effect between variables in a sample size (62) of the managers of banks civil in Baghdad (Baghdad, Gulf, Assyria, Union, Elaf) and focused research problem in question is bold is whether the analysis of the relationship between the knowledge gap and the performance gap strategic leads to recognize organizations need to shift to organizations educated, either in the side of the field was the pr
... Show MoreCollaborative learning is a way that prepares students practically for real-world applications. Working together as teamwork to execute various writing skills is essential in most professions since it increases the level of experience. Thus, the current study aims to identify the role collaborative writing in developing students' level of performance in writing. It is qualitative in nature since the researcher depended on the extant literature in achieving the objective of the study. The researcher touched upon related theories that addressed Collaborative learning, categories, and problems .It concluded that collaborative writing increases the students’ self-confidence, self-esteem, creativity, and motivation through the interact
... Show MoreThe study aimed to investigate the effect of using the intructional computer individually or through the cooperative groups on the achievement of the ninth grade students in mathematics compared to the traditional method. The experimental method adapted three groups out of three schools were chosen, two groups of the students where applied the computer method. The comtrol group used the simple random method, and it used the diagnostic test as tool for the study.The result showed that there is a statistically significant difference between the mean scores of the experimental groups and the control group on the post-test for the two experimental groups.
This study aims to know the extent of the impact of Strategic Leadership as an independent variable in Strategic Learning as a dependent variable to help the senior leadership in Anbar University to take the right decisions to develop Strategic Learning programs in light of the circumstances of the Covid-19 and the sudden decisions adopted by the university to switch to E-learning and to blend. The survey was conducted by distributing a questionnaire that was adopted as a primary tool in data collection from the study sample represented by the university's senior leaders, An intentional random sample of (105) was selected from our community of (127), the data were analyzed by (SPSS) Depe
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show More