Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images.This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, newfeatures, and applications. Itstarts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance.Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening
In recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
The aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di
... Show MoreE-learning seeks to create an interactive learning environment between the teacher and the learner through electronic media conveying in more than one direction, regardless of how the environment and its variables are identified. It also develops skills necessary to deal with technology in order to be able to take into account the individual differences between them and helps e-learning teacher and learner to achieve the goals set in advance and identify educational objectives in a clear manner. The research aims to identify e-learning in its benefits and management systems. It has three sections dealt with in the current research. Chapter II concentrates on the research Methodology, which consisted of three sections: The first s
... Show MoreThe purpose of this paper is to identify the statistical indicators of the searched variables and identify the relationship between the cognitive learning outcome and the performance of the two mastering skills by parallel spherical standing and equilibrium on the balance beam. And the identification of the percentage of the cognitive learning outcome contribution to the performance of the two mastering skills by parallel spherical standing and the equilibrium on the balance beam. The two researchers used the descriptive approach in the survey method and the correlational relations, being the most appropriate to the nature of the research problem. The research community for the second stage students in the College of Physical Education and
... Show MoreThe use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode
... Show MoreThis study was carried out in Artificial Insemination Center of Iraq to revealed FMD disease effect on some seminal attributer parameters of 14 imported Holstein bulls divided to three groups according to different reproductive efficiency (four High, five medium and five weak). Results showed that FMD disease had significant (P < 0.05) adverse effect on most seminal attributer parameters, mass, individual motility and sperm concentration / ml during post disease in first of two, four, all months of high, medium and weak semen quality bulls respectively .but semen volume didn’t influenced significantly with this disease. So semen collection should be suspended until resume normal fertility of sperm, after two, four month of high and
... Show MoreThe continuous growth in technology and technological devices has led to the development of machines to help ease various human-related activities. For instance, irrespective of the importance of information on the Steam platform, buyers or players still get little information related to the application. This is not encouraging despite the importance of information in this current globalization era. Therefore, it is necessary to develop an attractive and interactive application that allows users to ask questions and get answers, such as a chatbot, which can be implemented on Discord social media. Artificial Intelligence is a technique that allows machines to think and be able to make their own decisions. This research showed that the dis
... Show MoreThis research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show More