Silicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their ability to establish anisotropic networks (fabrics) comprising strong-force transmitting inter-particle contacts under shear loading. Strong contacts pertain to the relatively small number of contacts carrying greater than the average normal contact force. However, information on how such fabrics evolve in Si-based assemblies under mechanical loading, and their link to bulk shear strength of such assemblies are scarce in the literature. Using discrete element method (DEM), here we present results on how Si-based granular assemblies develop shear strength and their internal fabric structures under bi-axial quasi-static compression loading. Based on the analysis, a simple constitutive relation is presented for the bulk shear strength of the Si-based assemblies relating with their internal fabric anisotropy of the heavily loaded contacts. These findings could help to develop structure-processing property relations of Si-based materials in future, which originate at the microscale.
Background: The bond strength of root canal sealers to dentin and gutta-percha seems to be an important property for maintaining the stability of root canal filling, which potentially influences both leakage and root strength. The objective of this, in vitro, study was to evaluate the shear bond strength of three different endodontic sealers (Gutta-Flow, AH Plus, Apexit Plus) to dentin, in the presence and absence of the smear layer and gutta percha. Material and Methods: After slicing off the occlusal 2mm of 60 extracted human maxillary premolar teeth, the exposed dentin served as the tested surfaces; the teeth were fixed with cold cure acrylic, and were divided into two groups according to the smear layer presence, group A without smear
... Show MoreThis study aims to evaluate the influence of the air abrasion of dentin on the shear bond strength of lithium disilicate using three different types of luting cements. Sixty cylindrical specimens were milled from lithium disilicate CAD/CAM blocks (IPSe.max CAD). Sixty sound human maxillary premolar teeth were decoronated to the level of peripheral dentin, then randomly divided into three groups according to the type of luting cement used for the cementation of the lithium disilicate specimens (n = 20); Group A: Glass ionomer cement (Riva Self- Cure); Group B: Adhesive resin cement (Rely X Ultimate); Group C: Self-adhesive resin cement (Rely X U200). Each group was then further subdivided into two subgroups (n=10); Subgroups AI, BI, and CI,
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
The success of endodontic therapy is relied on radicular system cleaning, shaping, elimination of micro-organisms, and three dimensional filling of the radicular complex.This study was conducted to develop and assess new root canal sealer incorporating nano-sized bioactive glass into Gutta Flow II. The following concentration was used depend on a pilot study included adding (3%) of 45S5 bioactive glass into the Gutta Flow II. These materials were tested through assessment bioactivity. bioactivity test was undertaken after immersion of the tested samples into PBS for three days, seven days, fourteen days, and twenty eight days using FTIR too. study was found that it’s peaks was appear at level 800-1000 cm-1. The results showed that GFII gr
... Show MoreABSTRACT Background: Bracket rebonding is a common problem in orthodontics which may result in many drawbacks. The aims of this study were to evaluate the effects of application of two enamel protective agents “Icon†and “ProSeal†on shear bond strength before and after rebonding of stainless steel orthodontic brackets using conventional orthodontic adhesive and to assess the site of bond failure. Materials and methods: Fifty sound extracted human upper first premolar teeth were selected and randomly divided into two equal groups; the first time bonding and the rebonding groups (n=30). Each group was subdivided into control, Icon and ProSeal subgroups. The enamel protective agents were applied after etching (precondi
... Show MoreBackground: The present study was carried out to compare shear bond strength of sapphire bracket bonded to zirconium surface after using different methods of surface conditioning and assessment of the adhesive remnant index. Materials and methods: The sample composed of 40 zirconium specimens divided into four groups; the first group was the control, the second group was conditioned by sandblast with aluminum oxide particle 50 μm, the third and fourth group was treated by (Nd: YAG) laser (1064nm)(0.888 Watt for 5 seconds) for the 1st laser group and (0.444 Watt for 10 seconds) for the 2nd laser group. All samples were coated by z-prime plus primer. A central incisor sapphire bracket was bonded to all samples with light cure adhesive res
... Show MoreThe new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic oct
... Show MoreResin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This
Background: The aim of this study was to evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) of different orthodontic adhesive systems after exposure to aging media (water storage and acid challenge). Materials and methods: Eighty human upper premolar teeth were extracted for orthodontic purposes and randomly divided into two groups (40 teeth each): the first group in which the bonded teeth were stored in distilled water for 30 days at 37°C, and the second group in which the bonded teeth were subjected to acid challenge. Each group was further subdivided into four subgroups (10 teeth each) according to the type of adhesive system that would be bonded to metal brackets: either non-fluoride releasing adhesive (NFRA),
... Show More