Silicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their ability to establish anisotropic networks (fabrics) comprising strong-force transmitting inter-particle contacts under shear loading. Strong contacts pertain to the relatively small number of contacts carrying greater than the average normal contact force. However, information on how such fabrics evolve in Si-based assemblies under mechanical loading, and their link to bulk shear strength of such assemblies are scarce in the literature. Using discrete element method (DEM), here we present results on how Si-based granular assemblies develop shear strength and their internal fabric structures under bi-axial quasi-static compression loading. Based on the analysis, a simple constitutive relation is presented for the bulk shear strength of the Si-based assemblies relating with their internal fabric anisotropy of the heavily loaded contacts. These findings could help to develop structure-processing property relations of Si-based materials in future, which originate at the microscale.
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreThe lower respiratory tract of sheep was studied to determine the torsion and branching of the bronchial tree. The respiratory system of ruminants and all living organisms is one of the most important organs in the body that controls the amount of gas exchange between the heart and lungs through the airways, it is clear that in sheep it consists of a narrow bronchial tube that reaches the extent of lung tissue repercussions. He used silicon, water, acid, and at room temperature, and the substance was injected with an injection gun through the trachea and was pushed gently to spread and distribute in all parts of the lungs with moderate manual pressure. The results showed that the mold shape in the lung and the bronchial branches of
... Show MorePolymer composite materials were prepared by mixing epoxy resin with sand particles in three different grain size (150-300 ), (300-600 ) and (600- 1200) μm . The weight of epoxy was 15%, 20%, 25% and 30% of the total weight. Compression strength and flexural strength tests were carried out for the prepared samples .The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes .These percentages were adopted to fill the void between particles sand which have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin. The
... Show MoreSIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show MoreThe performance and lifetime of the flexible asphalt pavement are mainly dependent on the interfacial bond strength between layer courses. To enhance the bond between layers, adhesive materials, such as tack coats, are used. The tack coat itself is a bituminous material, which is applied on an existing relatively non-absorbent surface to ensure a strong bond between the old and newly paved layer. The primary objective of this study was to evaluate the effects of various types of tack coat materials on interlayer bond strength and to determine the optimal application rate for each type. The tack coat types used in this paper were RC-70, RC-250, and CSS-1h. Both laboratory-prepared and field-constructed hot mix asphalt concrete pavements usin
... Show More
Background: Polymethylmethacrylate (PMMA) is the most ‎commonly used mâ€aterial in denture construction. This material is ‎far from ideal in fulfilling the‎ mechanical requirements, like low impact and transverse strength and poor thermal conductivity are present in this material. The purpose of this study was to study the effect of addition a composite which include 1%wt silanized silicone dioxide nano fillers (SiO2) and 1wt% oxygen plasma treated polypropylene fiber (PP) on some properties of heat cured acrylic resin denture base material (PMMA). Materials and methods: One hundâ€red (100) prepared specimens were divided into five groups according to the tests, each group consisted of 20 specimens and t