The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structure of [Co(L)], [Ni(L)], [Cu(L)] and[Zn(L)] complexes adopting an octahedral about this metal ions. The synthesized ligand, along with their metal complexes were screened for their in vitro antibacterial activity against ten local strains of E. coli as gram-negative bacteria in addition to ten strains of Salmonella typhi and to ten strains of Acinetobacter baumannii and Ten gram- positive bacteria utilizing for locally strains of Staphylococcus aureus, were tested also using the agar diffusion technique.
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Phosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show MoreIn the current study, new derivatives were synthesized by reaction of N-hydroxyphthalimide with chloro acetyl chloride in the presence of Et3N as a base to form 1,3-dioxoisoindolin-2-yl 2-chloroacetate (B1), which in turn enters several reactions with different amines where it interacts with primary amines to give 1,3-dioxoisoindolin-2-yl acetate derivatives (B2-B4) in basic medium, in the same way it interacts with these amines but with adding KNCS to form thiourea derivatives (B5-B7). It also reacts with diamines to give bis(azanediyl) derivatives (compounds B8-B10). The prepared derivatives were diagnosed using infrared FTIR and 1HNMR,13CNMR for some derivatives. Compounds B4, B5 and B9 were measured as corrosion inhibitors the inhibitio
... Show MoreNew complexes of Cu (ll), Ni (ll), Co (ll), and Zn (ll) wi th 2-amino-5-p-Fiouro Phenyl 1, 3, 4-Thiadiazole have been synthesized. The products were isolated, studied and characterized by physical measurements, ie,(Ff-IR), UV-Vis and the melting points were determined. The new Schiff base (L) has been used to prepare some complexes. The prepared complexes were identified and their structural geometry were suggested
In the current work, aromatic amines and alkyl halides have been converted to the corresponding azides 2a‒d and 4a-d by the reaction with sodium nitrite and sodium azide respectively for amines and sodium azide for halides. Then, dipropargyl ether derivative of D-mannose 8 has been synthesized from diacetone mannose that has been obtained by the treatment of D-mannose (5) with dry acetone in the presence of sulfuric acid. Then, aldol condensation has been used to prepare diol 7 from the mannose diacetonide 6. The reaction of compound 7 with propargyl bromide in alkaline media has been afforded dipropargyl
... Show MoreBy condensation of benzaldehyde with thiourea in absolute ethanol in the presence of glacial acetic acid as a catalyst, the Schiff base(1-benzylidenethiourea)[I] was synthesized by synthesis of 4-(3-benzylidenethioureido)-4-thioxobut-2-enoic acid compound[II] by reaction of maleic anhydride with schiff base [I] in DMF. When treating compound [II] with ammonium persulfate (NH4)2S2O8 (APS) as an ethanol initiator to obtain polymer [III], compound [III] reacted to polymer [IV] with SOCl2 in benzene. Sulfamethizole, celecoxib, salbutamol, 4-aminoantipyrine to yield polymers [V-VIII], compound [IV] reaction with different drugs. Spectral evidence established the structure of synthesized compounds: FTIR an
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
In this paper the new starting material 2-(5-chloro-1H-benzo[d]imidazole-2-yl) aniline (1) was synthesized by the condensation reaction of 4-chloro-o-phenylenediamine and anthranilic acid .The new Mannich base derivatives were synthesized using formaldehyde and different secondary amines to synthesize a new set of benzimidazole derivatives(2-5). Also, the new Schiff-base derivatives (6-10) were synthesized from the reaction of compound (1) with various aromatic aldehydes and the closure-ring was done successfully using mercapto acetic acid to get the new thiazolidine derivatives(11-12).These new compounds were characterized using some physical techniques like:FT-IR Spectra and 1HNMR Spectra.