Dam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (FE) model. This model was used to differentiate between the effect of turbine units’ operation on dam stability in accordance to maximum and minimum reservoir upstream water levels, and the varying flowrates in a fully open gate condition. In the second stage of the analysis, an ANSYS-static modeling approach was used to develop a 3-D FE earthfill dam model. The water pressure pattern determined on the boundary of the running turbine model is transformed into the pressure at the common area of the dam body with turbines. The model is inspected for maximum and minimum upstream water levels. Findings indicate that the water stress fluctuations on the dam body are proportional to the inverse distance from the turbine region. Also, it was found that the cone and outlet of the hydropower turbine system are the most affected regions when turbine is running. Based on the attained results, a systematic operation program was proposed in order to control the running hydropower plant with minimized principal stress at selected nodes on the dam model and the six turbines.
In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonic
... Show MoreAs a result of the increase in wireless applications, this led to a spectrum problem, which was often a significant restriction. However, a wide bandwidth (more than two-thirds of the available) remains wasted due to inappropriate usage. As a consequence, the quality of the service of the system was impacted. This problem was resolved by using cognitive radio that provides opportunistic sharing or utilization of the spectrum. This paper analyzes the performance of the cognitive radio spectrum sensing algorithm for the energy detector, which implemented by using a MATLAB Mfile version (2018b). The signal to noise ratio SNR vs. Pd probability of detection for OFDM and SNR vs. BER with CP cyclic prefix with energy dete
... Show MoreSmart systems are the trend for modern organizations and should meet the quality of services that expect to produce. Internet of Everything (IoE) helped smart systems to adopt microcontrollers for improving the performance. Analyzing and controlling data in such a system are critical issues. In this study, a survey of IoE systems conducted to show how to apply a suitable model that meets such system requirements. The analysis of some microcontroller boards is explored based on known features. Factors for applying IoE devices have been defined such as connectivity, power consumption, compatibility, and cost. Different methods have been explained as an overview of applying IoE systems. Further, different approaches for applying IoE technology
... Show MoreZirconia ceramic restoration (ZCR) has a higher fracture incidence rate than metal ceramic restoration. Different surface treatments were used to improve fracture performance of ZCR such as grit blasting (GB) by aluminium oxide powder. This type of surface treatment generate residual stresses on veneering ceramic causing crack initiation and ending with a fracture. In order to overcome the stress generated by GB, zirconia surface coating is used as a surface treatment to improve fracture resistance and to accommodate stresses along the ZCR layers. Fifty zirconia ceramic crowns were fabricated and divided according to the type of surface treatment into three groups; the first group is (ZG), involving 20 cores were coated with a mixture of pa
... Show MoreObjectives: The study intends to identify the sources of work-related stress that might face the nurses working at
psychiatric wards in Baghdad psychiatric hospitals and to find out a relationship between the levels of stress and
some demographic characteristics.
Methodology: A descriptive study was achieved from the 10th of December, 2013 through the 10th of March, 2014.
Non-probability purposive samples of 94 nurses who work in psychiatric wards of Baghdad psychiatric hospitals
were recruited to meet the study objectives. Psychological Stress Inventory (PSI) the Arabic version, which was
modified by Abu Al-Hussein (2010) (20), was used. Data were analyzed by using the statistical analysis program of
SPSS 19th versi
This experiment examined the effects of adding sodium alginate and KOJIC acid as substitutes of Conventional antibiotics to soybean lecithin extender on the characteristics of cryopreserved and frozen buffalo bull semen, as well as evaluation of their additions as antibiotics that to help lowering the microbial load. Following the collection and dilution of in the soybean lecithin extender, the experimental treatments were separated into five groups, as follows: T1: (control-) without adding any antibiotics; T2: (control+) adding the conventional antibiotics Gentamicin 0.4 IU and Tylosin 0.08 IU per 100 ml; T3: adding Kojic acid at (0.06 g/L) T4: adding sodium alginate at (0.6 mg/mL)T
Actinomycetes are free, spore-forming, high (G+C) ratio (>55%) saprophytic microorganisms that are widely distributed in most soils, colonize plants, and are prevalent in water. This is frequently accompanied by the production of filament airborne mycelium. Actinomycetes are well-known microcolonies for creating antibiotics and other critical bioactive components that are beneficial to humans. Approximately 70% to 80% of commercially available medications and antiviral active compounds have been synthesized so far. Secondary metabolites produced by microbes have the potential to be used in a variety of sectors, including antimicrobial agents, enzyme technology, pigment manufacture, antitumor agents against cancer cells, and toxin pr
... Show More