Preferred Language
Articles
/
PBbCDIcBVTCNdQwC-zO4
Producing low-cost self-consolidation concrete using sustainable material
...Show More Authors
Abstract<p>The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste ceramics and granite tiles. The percentage increases to 11.59% at 28 days for compressive strength when using 10% replacement of cement weight. The ability to produce eco-SCC with less cement content and lower cost consumption is encouraged, although the enhancement in strength is not high since the waste can be disposable. While the percentage reduction in the strength of SCC mixes containing marble tile or thermostone block powder increases with the replacement of cement weight with a greater need for superplasticizer justification, we recommend using 5% as a replacement by weight of cement with an insignificant retardation of strength. Finally, there is a good relationship between compressive strength and ultrasonic pulse velocity and between tensile and flexural strength with a high <italic>R</italic> <sup>2</sup>.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Mechanical Properties of High Performance Concrete Containing Waste Plastic as Aggregate
...Show More Authors

         The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Analysis of concrete beams reinforced by GFRP bars with varying parameters
...Show More Authors
Abstract<p>Structural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi</p> ... Show More
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Retrofitting Reinforced Concrete One–Way Damaged Slabs Exposed to High Temperature
...Show More Authors

Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs
...Show More Authors

This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure m

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behaviour of Fire Exposed Reinforced Concrete Rigid Beams with Restrained Ends
...Show More Authors

This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Long-Term Operation and High Temperature on Material Properties of Austenitic Stainless Steel Type 321H
...Show More Authors

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Baghdad College Of Dentistry
A Comparative Evaluation of Apical Seal Associated with Ultrasonic Retrograde Cavities Filled with Bioactive Material ( in Vitro Study )
...Show More Authors

Background: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentineâ„¢) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10):

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 23 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Retentive forces, tensile strength and deflection fatigue of Acetal thermoplastic clasp material in comparison with cobalt-chromium alloy
...Show More Authors

Background: Nowadays there is an increasing of the emphasis on aesthetic, dentist have been concerned about providing aesthetics and functional removable partial dentures to their patients and this was make the mission more difficult because of the goal now is achieving optimal aesthetic of the denture - while maintaining retentive, stable, and conservative to the health of supporting tooth and supporting tissue. The traditional use of metal clasp like cobalt-chromium, gold, stainless-steel and titanium hampers esthetics because of its obvious display conflicts with patient’s prosthetic confidentiality. Acetal resin (poly oxy methylene) may be used as alternative denture clasp material. This material was promoted primarily on the basis of

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Studying Biomimetic Coated Niobium as an Alternative Dental Implant Material to Titanium (in vitro and in vivo study)
...Show More Authors

Commercially pure titanium (cpTi) is widely used as dental implant material although it was found that titanium exhibited high modulus of elasticity and the lower corrosion tendency in oral environment. Niobium(Nb) was chosen for this study as an alternative to cpTi implant material due to its bioinert behavior and good elastic modulus and moderate cost in addition to corrosion resistance. This study was done to evaluate the effect of biomimetic coating on the surface properties of the commercially pure titanium and niobium implants by in vitro and in vivo experiments. The in vitro study was involved etching the samples of each material in HCl then soaking in 10M NaOH aqueous solution. These samples were then immersed in a 5 times concent

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Estimate Gas Initially in Place of Tight Gas Reservoirs Based on Developed Methodology of Dynamic Material Balance Technique
...Show More Authors

With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti

... Show More
Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref