Preferred Language
Articles
/
PBZWtIcBVTCNdQwCvFzs
Studying the effect of copper on the p-ZnTe/n-AgCuInSe2/p-Si for thin films solar cell applications

A thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increased with increasing Cu content for AgCuInSe2 thin films. So the electrical conductivity changed from 1 (Ω.cm)-1 to 29.96 (Ω.cm)-1 when x changed from 0.0 to 0.2. The prepared thin films have two activation energies (Ea1 & Ea2) in the temperature ranges of (300-393) K and (303-473) K. The C-V measurements revealed that all prepared heterojunctions were of the abrupt type and the junction capacitance reduced while the width of depletion region and the built-in potential increased with increasing the Cooper content. The current-voltage characteristics under dark condition of AgCuInSe2 heterojunctions, the current-voltage measurements under illumination showed that the performance of heterojunction solar cell improved with increasing Cu content. The result indicated that the prepared solar cell with 0.2 Ag content exhibited the highest efficiency (η = 1.68%) compared to other prepared solar cells.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Improvement the efficiency of SnO2/n-Si detector by engraving method using a CNC machine

Tin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Energy Band Diagram of NiO: Lu2 O3/n-Si heterojunction

Crystalline NiO and doped with rare earth lutetium oxide (Lu2O3) at (6%wt)., have been prepared by pulsed laser deposition (PLD), The Q-switched Nd:YAG laser beam was incident at an angle of 45° on the target surface, and the energy of the laser was 500 mJ, wavelengths of 532nm, and frequency 6Hz. XRD pattern shows all doped and undoped films are polycrystalline, and cubic structure. The 200nm thin NiO showed an average optical energy band gap of 3.4eV, and increase with doping at 6% Lu2O3. The Hall Effect measurements confirmed that holes were predominant charges in the conduction process (i.e p-type). D.C conductivity measurements with temp-erature (T), show

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Study for Charge Transfer Complexes Between p- Chloranil with Anions of Amide, Azide and Cyanide

    The complexes of para-chloranil as electron acceptor and the anions of amide, azide and cyanide as electron donors in aqueous ethanol as a solvent, were studied spectrophotometrically .     The reactions lead to the formation of charge transfer complexes. The CT complexes were stable in excess acceptor concentration, while they were underwent another transformations in excess donors concentrations.   Stoichiometries were determined, the molecular ratio was determined by continuous variation method (Job method) and is was  1:1 (donor: acceptor).   The maximum wavelength (λ max.), the energy (hÏ…CT), ionization potential (Ip) and activation energy (w ) of excited state f

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
The structure and optical properties of CdSe:Cu Thin Films

A polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Ab–Initio large unit cell calculations of the electronic structure of Si and Ge nanocrystals

Ab – initio restricted Hartree - Fock method within the framework of large unit cell (LUC) formalism is used to investigate the electronic structure of Si and Ge nanocrystals. The surface and core properties are investigated. A large unit cell of 8 atoms is used in the present analysis. Cohesive energy, energy gap, conduction and valence band widths are obtained from the electronic structure calculations. The results are compared with available experimental data and theoretical results of other investigators. The calculated lattice constant is found to be slightly larger than the corresponding experimental value because we use only 8 atoms and we compared the results with that of the bulk crystals, nanoclusters are expected to have str

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Substrate Temperature Effect on the Structure, Morphological and Optical Properties of CuO/Sapphire Thin Films Prepared by Pulsed Laser deposition

This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased.  The FTIR spec

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Laser Irradiation Effect on The Optical Properties of CoO<sub>2</sub>Thin Films deposited via Semi-Computerized Spraying System
Abstract<p>In this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO<sub>2</sub>) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe</p> ... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Study of Spectroscopy and Thermodynamic Properties for Phoshours dioxide PO2 Molecular and Influence Study of Bond ( P-O ) on Spectroscopy Properties

In This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 k

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Annealing Effect on Some Optical Properties of Cr2O3 Thin Films Prepared by Spray Pyrolysis Technique

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.

Crossref
View Publication Preview PDF
Publication Date
Mon Mar 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Influence of Aluminum Doping on Structural Films)Thin 3O2and Optical Properties of (Bi

      In this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al  thin  films  with   different  doping   ratios  ( 1, 2, 3 ) %  ,  which  were  prepared  by  thermal evaporation  technique under  vacuum , with  thickness  ( 450 ± 20 ) nm  deposited  on  glass substrates  at  room  temperature ( 300 ) K , Structural   measurements by ( XRD)  techniques demonstrated   that  all   samples  prepared   have  polycrystalline  structure   with  tetragonal structure and  a preferred orientation  [ 201 ]   the &n

... Show More
View Publication Preview PDF