The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtures (EME1) and (EME2) that exhibit high degree of high stiffness in order to with stand against the initiation of rutting. The evaluation process will be based on conducting the pneumatic repeated load system and the wheel-tracking test. For this purpose, hard asphalt cement with a penetration grade of 20-30 for EME comparing with conventional asphalt cement with penetration grade of 40-50. The results obtained indicates that increasing the temperature from (25 to 4°C), Resilient Modulus (M ) reduced by 65 and 20% for r conventional and (EME) for base course while at the binder course the resilient modulus reduced by 59 and 16% for conventional and (EME), respectively. Wheel track test results showed that permanent deformation increased significantly with hard penetration grade bitumen, the rut depth was 2.55 mm while for conventional bitumen was 16.15 mm for base course. While at binder course the rut depth was 2.43 mm while for conventional bitumen was 15.1 mm. This increasing in rutting resistance important for reducing and preventing structural failure and in other hand for economy and reducing layer thickness.
Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreNon-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.
The fine aggregate
... Show MoreThis research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked do
... Show MoreFour simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreThe utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of
... Show MoreA dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th
... Show MoreObjective(s): This study aims at determining the effectiveness of an educational program on knowledge of high school students' knowledge about substance abuse and its health consequences, and to find out the association between students’ knowledge about substance abuse and its health consequences and their demographic data of age, socioeconomic status, and educational level of parents.
Methodology: A quasi-experimental study is conducted for the period of October 28th, 2019 to March 30th, 2020. The study sample included a nonprobability “purposive” sample of (124) male students (62) students for the control group and (62) students for the study group, aged (14-19) years who are selected from Al-Hikma High School for Boys in Kirk
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.