The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtures (EME1) and (EME2) that exhibit high degree of high stiffness in order to with stand against the initiation of rutting. The evaluation process will be based on conducting the pneumatic repeated load system and the wheel-tracking test. For this purpose, hard asphalt cement with a penetration grade of 20-30 for EME comparing with conventional asphalt cement with penetration grade of 40-50. The results obtained indicates that increasing the temperature from (25 to 4°C), Resilient Modulus (M ) reduced by 65 and 20% for r conventional and (EME) for base course while at the binder course the resilient modulus reduced by 59 and 16% for conventional and (EME), respectively. Wheel track test results showed that permanent deformation increased significantly with hard penetration grade bitumen, the rut depth was 2.55 mm while for conventional bitumen was 16.15 mm for base course. While at binder course the rut depth was 2.43 mm while for conventional bitumen was 15.1 mm. This increasing in rutting resistance important for reducing and preventing structural failure and in other hand for economy and reducing layer thickness.
The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude–Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio to 0.1, has been studied alongside the Drude–Lorentz dielectric
... Show MoreAn increasing interest is emerging in identifying natural products to overcome drug resistance in cancer patients. In this context, the present study was conducted to investigate the cytotoxic effects of neem plant (Azadirachta indica) oil in three different biological models (breast cancer cell lines, Allium cepa root tip, and mice vital organs). The cytotoxic potential of the neem oil was evaluated with two human cell lines (MCF7 and MDA-MB231) and an Allum cepa root tip bioassay. Histopathological analysis was conducted on the neem oil-treated and untreated control mice. The results revealed an anti-proliferative effect for neem oil on both estrogen receptor-positive (MCF7) and estrogen receptor-negative (MDA-MB231) breast cancer cell li
... Show MoreImproving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes perf
... Show MoreThis study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-tem
... Show MoreAsphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show MoreThe filler in the asphalt mixture is essential since it plays a significant role in toughening and stiffening the asphalt. Changes in filler type can lead the asphalt mixtures to perform satisfactorily during their design life or degrade rapidly when traffic and environmental effects are considered. This study aims to assess the impact of filler types such as limestone dust (LS) and hydrated lime (HL) on Marshall characteristics and moisture damage in asphalt mixtures. Three different percentages of HL were employed in this study to partially replace the LS mineral filler: 1.5, 2.0, and 2.5% by aggregate weight. Furthermore, a control mixture was created with 7% LS by overall aggregate weight for the wearing course layer. The Marsha
... Show More